| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
| Ref | Expression |
|---|---|
| rabeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 656 |
. . 3
| |
| 2 | 1 | albii 1399 |
. 2
|
| 3 | df-ral 2353 |
. 2
| |
| 4 | sbn 1867 |
. . . 4
| |
| 5 | 4 | albii 1399 |
. . 3
|
| 6 | nfv 1461 |
. . . 4
| |
| 7 | 6 | sb8 1777 |
. . 3
|
| 8 | eq0 3266 |
. . . 4
| |
| 9 | df-rab 2357 |
. . . . . . . 8
| |
| 10 | 9 | eleq2i 2145 |
. . . . . . 7
|
| 11 | df-clab 2068 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 182 |
. . . . . 6
|
| 13 | 12 | notbii 626 |
. . . . 5
|
| 14 | 13 | albii 1399 |
. . . 4
|
| 15 | 8, 14 | bitri 182 |
. . 3
|
| 16 | 5, 7, 15 | 3bitr4ri 211 |
. 2
|
| 17 | 2, 3, 16 | 3bitr4ri 211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-nul 3252 |
| This theorem is referenced by: rabnc 3277 rabrsndc 3460 ssfilem 6360 diffitest 6371 iooidg 8932 icc0r 8949 fznlem 9060 ioo0 9268 ico0 9270 ioc0 9271 |
| Copyright terms: Public domain | W3C validator |