ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztp Unicode version

Theorem fztp 9095
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )

Proof of Theorem fztp
StepHypRef Expression
1 uzid 8633 . . 3  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 peano2uz 8671 . . 3  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
3 fzsuc 9086 . . 3  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( M ... ( ( M  + 
1 )  +  1 ) )  =  ( ( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } ) )
41, 2, 33syl 17 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( ( M ... ( M  +  1
) )  u.  {
( ( M  + 
1 )  +  1 ) } ) )
5 zcn 8356 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
6 ax-1cn 7069 . . . . . 6  |-  1  e.  CC
7 addass 7103 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
86, 6, 7mp3an23 1260 . . . . 5  |-  ( M  e.  CC  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
95, 8syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
10 df-2 8098 . . . . 5  |-  2  =  ( 1  +  1 )
1110oveq2i 5543 . . . 4  |-  ( M  +  2 )  =  ( M  +  ( 1  +  1 ) )
129, 11syl6eqr 2131 . . 3  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  + 
2 ) )
1312oveq2d 5548 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( M ... ( M  +  2 ) ) )
14 fzpr 9094 . . . 4  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
1512sneqd 3411 . . . 4  |-  ( M  e.  ZZ  ->  { ( ( M  +  1 )  +  1 ) }  =  { ( M  +  2 ) } )
1614, 15uneq12d 3127 . . 3  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } ) )
17 df-tp 3406 . . 3  |-  { M ,  ( M  + 
1 ) ,  ( M  +  2 ) }  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } )
1816, 17syl6eqr 2131 . 2  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  { M ,  ( M  +  1 ) ,  ( M  +  2 ) } )
194, 13, 183eqtr3d 2121 1  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433    u. cun 2971   {csn 3398   {cpr 3399   {ctp 3400   ` cfv 4922  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984   2c2 8089   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fztpval  9100  fz0tp  9135  fzo0to3tp  9228
  Copyright terms: Public domain W3C validator