ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztpval Unicode version

Theorem fztpval 9100
Description: Two ways of defining the first three values of a sequence on 
NN. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem fztpval
StepHypRef Expression
1 1z 8377 . . . . 5  |-  1  e.  ZZ
2 fztp 9095 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
31, 2ax-mp 7 . . . 4  |-  ( 1 ... ( 1  +  2 ) )  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
4 df-3 8099 . . . . . 6  |-  3  =  ( 2  +  1 )
5 2cn 8110 . . . . . . 7  |-  2  e.  CC
6 ax-1cn 7069 . . . . . . 7  |-  1  e.  CC
75, 6addcomi 7252 . . . . . 6  |-  ( 2  +  1 )  =  ( 1  +  2 )
84, 7eqtri 2101 . . . . 5  |-  3  =  ( 1  +  2 )
98oveq2i 5543 . . . 4  |-  ( 1 ... 3 )  =  ( 1 ... (
1  +  2 ) )
10 tpeq3 3480 . . . . . 6  |-  ( 3  =  ( 1  +  2 )  ->  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) } )
118, 10ax-mp 7 . . . . 5  |-  { 1 ,  2 ,  3 }  =  { 1 ,  2 ,  ( 1  +  2 ) }
12 df-2 8098 . . . . . 6  |-  2  =  ( 1  +  1 )
13 tpeq2 3479 . . . . . 6  |-  ( 2  =  ( 1  +  1 )  ->  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) } )
1412, 13ax-mp 7 . . . . 5  |-  { 1 ,  2 ,  ( 1  +  2 ) }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
1511, 14eqtri 2101 . . . 4  |-  { 1 ,  2 ,  3 }  =  { 1 ,  ( 1  +  1 ) ,  ( 1  +  2 ) }
163, 9, 153eqtr4i 2111 . . 3  |-  ( 1 ... 3 )  =  { 1 ,  2 ,  3 }
1716raleqi 2553 . 2  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C
) ) )
18 1ex 7114 . . 3  |-  1  e.  _V
19 2ex 8111 . . 3  |-  2  e.  _V
20 3ex 8115 . . 3  |-  3  e.  _V
21 fveq2 5198 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
22 iftrue 3356 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  A )
2321, 22eqeq12d 2095 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
1 )  =  A ) )
24 fveq2 5198 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
25 1re 7118 . . . . . . . 8  |-  1  e.  RR
26 1lt2 8201 . . . . . . . 8  |-  1  <  2
2725, 26gtneii 7206 . . . . . . 7  |-  2  =/=  1
28 neeq1 2258 . . . . . . 7  |-  ( x  =  2  ->  (
x  =/=  1  <->  2  =/=  1 ) )
2927, 28mpbiri 166 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
30 ifnefalse 3362 . . . . . 6  |-  ( x  =/=  1  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
3129, 30syl 14 . . . . 5  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
32 iftrue 3356 . . . . 5  |-  ( x  =  2  ->  if ( x  =  2 ,  B ,  C )  =  B )
3331, 32eqtrd 2113 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  B )
3424, 33eqeq12d 2095 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
2 )  =  B ) )
35 fveq2 5198 . . . 4  |-  ( x  =  3  ->  ( F `  x )  =  ( F ` 
3 ) )
36 1lt3 8203 . . . . . . . 8  |-  1  <  3
3725, 36gtneii 7206 . . . . . . 7  |-  3  =/=  1
38 neeq1 2258 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  1  <->  3  =/=  1 ) )
3937, 38mpbiri 166 . . . . . 6  |-  ( x  =  3  ->  x  =/=  1 )
4039, 30syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  if ( x  =  2 ,  B ,  C ) )
41 2re 8109 . . . . . . . 8  |-  2  e.  RR
42 2lt3 8202 . . . . . . . 8  |-  2  <  3
4341, 42gtneii 7206 . . . . . . 7  |-  3  =/=  2
44 neeq1 2258 . . . . . . 7  |-  ( x  =  3  ->  (
x  =/=  2  <->  3  =/=  2 ) )
4543, 44mpbiri 166 . . . . . 6  |-  ( x  =  3  ->  x  =/=  2 )
46 ifnefalse 3362 . . . . . 6  |-  ( x  =/=  2  ->  if ( x  =  2 ,  B ,  C )  =  C )
4745, 46syl 14 . . . . 5  |-  ( x  =  3  ->  if ( x  =  2 ,  B ,  C )  =  C )
4840, 47eqtrd 2113 . . . 4  |-  ( x  =  3  ->  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  =  C )
4935, 48eqeq12d 2095 . . 3  |-  ( x  =  3  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( F ` 
3 )  =  C ) )
5018, 19, 20, 23, 34, 49raltp 3449 . 2  |-  ( A. x  e.  { 1 ,  2 ,  3 }  ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `
 1 )  =  A  /\  ( F `
 2 )  =  B  /\  ( F `
 3 )  =  C ) )
5117, 50bitri 182 1  |-  ( A. x  e.  ( 1 ... 3 ) ( F `  x )  =  if ( x  =  1 ,  A ,  if ( x  =  2 ,  B ,  C ) )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B  /\  ( F `  3 )  =  C ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   A.wral 2348   ifcif 3351   {ctp 3400   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984   2c2 8089   3c3 8090   ZZcz 8351   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-tp 3406  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-3 8099  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator