ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdass Unicode version

Theorem gcdass 10404
Description: Associative law for  gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )

Proof of Theorem gcdass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anass 393 . . 3  |-  ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) )
2 anass 393 . . . . . 6  |-  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) )
32a1i 9 . . . . 5  |-  ( x  e.  ZZ  ->  (
( ( x  ||  N  /\  x  ||  M
)  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) ) )
43rabbiia 2591 . . . 4  |-  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }
54supeq1i 6401 . . 3  |-  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  )
61, 5ifbieq2i 3372 . 2  |-  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  ( x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  ) )
7 gcdcl 10358 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  e.  NN0 )
873adant3 958 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e. 
NN0 )
98nn0zd 8467 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e.  ZZ )
10 simp3 940 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 gcdval 10351 . . . 4  |-  ( ( ( N  gcd  M
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( N  gcd  M )  gcd  P )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 403 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  gcd  M )  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
13 gcdeq0 10368 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
14133adant3 958 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
1514anbi1d 452 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  gcd  M )  =  0  /\  P  =  0 )  <-> 
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ) )
1615bicomd 139 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( ( N  gcd  M )  =  0  /\  P  =  0 ) ) )
17 simpr 108 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
18 simpl1 941 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
19 simpl2 942 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  M  e.  ZZ )
20 dvdsgcdb 10402 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( x  ||  N  /\  x  ||  M )  <-> 
x  ||  ( N  gcd  M ) ) )
2117, 18, 19, 20syl3anc 1169 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  x  ||  M )  <->  x  ||  ( N  gcd  M ) ) )
2221anbi1d 452 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P )  <->  ( x  ||  ( N  gcd  M
)  /\  x  ||  P
) ) )
2322rabbidva 2592 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } )
2423supeq1d 6400 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } ,  RR ,  <  ) )
2516, 24ifbieq2d 3373 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
2612, 25eqtr4d 2116 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) ) )
27 simp1 938 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
28 gcdcl 10358 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P
)  e.  NN0 )
29283adant1 956 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e. 
NN0 )
3029nn0zd 8467 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e.  ZZ )
31 gcdval 10351 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M  gcd  P )  e.  ZZ )  -> 
( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
3227, 30, 31syl2anc 403 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P )  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
33 gcdeq0 10368 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M  gcd  P )  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
34333adant1 956 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  gcd  P
)  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
3534anbi2d 451 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  gcd  P )  =  0 )  <-> 
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ) )
3635bicomd 139 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) )  <->  ( N  =  0  /\  ( M  gcd  P )  =  0 ) ) )
37 simpl3 943 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  P  e.  ZZ )
38 dvdsgcdb 10402 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( x  ||  M  /\  x  ||  P )  <-> 
x  ||  ( M  gcd  P ) ) )
3917, 19, 37, 38syl3anc 1169 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  M  /\  x  ||  P )  <->  x  ||  ( M  gcd  P ) ) )
4039anbi2d 451 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) )  <-> 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) ) )
4140rabbidva 2592 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } )
4241supeq1d 6400 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } ,  RR ,  <  ) )
4336, 42ifbieq2d 3373 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
4432, 43eqtr4d 2116 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) ) )
456, 26, 443eqtr4a 2139 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   {crab 2352   ifcif 3351   class class class wbr 3785  (class class class)co 5532   supcsup 6395   RRcr 6980   0cc0 6981    < clt 7153   NN0cn0 8288   ZZcz 8351    || cdvds 10195    gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  rpmulgcd  10415
  Copyright terms: Public domain W3C validator