| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genipv | Unicode version | ||
| Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| genp.1 |
|
| genp.2 |
|
| Ref | Expression |
|---|---|
| genipv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5539 |
. . . 4
| |
| 2 | fveq2 5198 |
. . . . . . 7
| |
| 3 | 2 | rexeqdv 2556 |
. . . . . 6
|
| 4 | 3 | rabbidv 2593 |
. . . . 5
|
| 5 | fveq2 5198 |
. . . . . . 7
| |
| 6 | 5 | rexeqdv 2556 |
. . . . . 6
|
| 7 | 6 | rabbidv 2593 |
. . . . 5
|
| 8 | 4, 7 | opeq12d 3578 |
. . . 4
|
| 9 | 1, 8 | eqeq12d 2095 |
. . 3
|
| 10 | oveq2 5540 |
. . . 4
| |
| 11 | fveq2 5198 |
. . . . . . . 8
| |
| 12 | 11 | rexeqdv 2556 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2369 |
. . . . . 6
|
| 14 | 13 | rabbidv 2593 |
. . . . 5
|
| 15 | fveq2 5198 |
. . . . . . . 8
| |
| 16 | 15 | rexeqdv 2556 |
. . . . . . 7
|
| 17 | 16 | rexbidv 2369 |
. . . . . 6
|
| 18 | 17 | rabbidv 2593 |
. . . . 5
|
| 19 | 14, 18 | opeq12d 3578 |
. . . 4
|
| 20 | 10, 19 | eqeq12d 2095 |
. . 3
|
| 21 | nqex 6553 |
. . . . . . 7
| |
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | rabssab 3081 |
. . . . . . 7
| |
| 24 | prop 6665 |
. . . . . . . . . . . 12
| |
| 25 | elprnql 6671 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | sylan 277 |
. . . . . . . . . . 11
|
| 27 | prop 6665 |
. . . . . . . . . . . 12
| |
| 28 | elprnql 6671 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | sylan 277 |
. . . . . . . . . . 11
|
| 30 | genp.2 |
. . . . . . . . . . . 12
| |
| 31 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl5ibrcom 155 |
. . . . . . . . . . 11
|
| 33 | 26, 29, 32 | syl2an 283 |
. . . . . . . . . 10
|
| 34 | 33 | an4s 552 |
. . . . . . . . 9
|
| 35 | 34 | rexlimdvva 2484 |
. . . . . . . 8
|
| 36 | 35 | abssdv 3068 |
. . . . . . 7
|
| 37 | 23, 36 | syl5ss 3010 |
. . . . . 6
|
| 38 | 22, 37 | ssexd 3918 |
. . . . 5
|
| 39 | rabssab 3081 |
. . . . . . 7
| |
| 40 | elprnqu 6672 |
. . . . . . . . . . . 12
| |
| 41 | 24, 40 | sylan 277 |
. . . . . . . . . . 11
|
| 42 | elprnqu 6672 |
. . . . . . . . . . . 12
| |
| 43 | 27, 42 | sylan 277 |
. . . . . . . . . . 11
|
| 44 | 41, 43, 32 | syl2an 283 |
. . . . . . . . . 10
|
| 45 | 44 | an4s 552 |
. . . . . . . . 9
|
| 46 | 45 | rexlimdvva 2484 |
. . . . . . . 8
|
| 47 | 46 | abssdv 3068 |
. . . . . . 7
|
| 48 | 39, 47 | syl5ss 3010 |
. . . . . 6
|
| 49 | 22, 48 | ssexd 3918 |
. . . . 5
|
| 50 | opelxp 4392 |
. . . . 5
| |
| 51 | 38, 49, 50 | sylanbrc 408 |
. . . 4
|
| 52 | fveq2 5198 |
. . . . . . . 8
| |
| 53 | 52 | rexeqdv 2556 |
. . . . . . 7
|
| 54 | 53 | rabbidv 2593 |
. . . . . 6
|
| 55 | fveq2 5198 |
. . . . . . . 8
| |
| 56 | 55 | rexeqdv 2556 |
. . . . . . 7
|
| 57 | 56 | rabbidv 2593 |
. . . . . 6
|
| 58 | 54, 57 | opeq12d 3578 |
. . . . 5
|
| 59 | fveq2 5198 |
. . . . . . . . 9
| |
| 60 | 59 | rexeqdv 2556 |
. . . . . . . 8
|
| 61 | 60 | rexbidv 2369 |
. . . . . . 7
|
| 62 | 61 | rabbidv 2593 |
. . . . . 6
|
| 63 | fveq2 5198 |
. . . . . . . . 9
| |
| 64 | 63 | rexeqdv 2556 |
. . . . . . . 8
|
| 65 | 64 | rexbidv 2369 |
. . . . . . 7
|
| 66 | 65 | rabbidv 2593 |
. . . . . 6
|
| 67 | 62, 66 | opeq12d 3578 |
. . . . 5
|
| 68 | genp.1 |
. . . . . 6
| |
| 69 | 68 | genpdf 6698 |
. . . . 5
|
| 70 | 58, 67, 69 | ovmpt2g 5655 |
. . . 4
|
| 71 | 51, 70 | mpd3an3 1269 |
. . 3
|
| 72 | 9, 20, 71 | vtocl2ga 2666 |
. 2
|
| 73 | eqeq1 2087 |
. . . . . 6
| |
| 74 | 73 | 2rexbidv 2391 |
. . . . 5
|
| 75 | oveq1 5539 |
. . . . . . 7
| |
| 76 | 75 | eqeq2d 2092 |
. . . . . 6
|
| 77 | oveq2 5540 |
. . . . . . 7
| |
| 78 | 77 | eqeq2d 2092 |
. . . . . 6
|
| 79 | 76, 78 | cbvrex2v 2586 |
. . . . 5
|
| 80 | 74, 79 | syl6bb 194 |
. . . 4
|
| 81 | 80 | cbvrabv 2600 |
. . 3
|
| 82 | 73 | 2rexbidv 2391 |
. . . . 5
|
| 83 | 76, 78 | cbvrex2v 2586 |
. . . . 5
|
| 84 | 82, 83 | syl6bb 194 |
. . . 4
|
| 85 | 84 | cbvrabv 2600 |
. . 3
|
| 86 | 81, 85 | opeq12i 3575 |
. 2
|
| 87 | 72, 86 | syl6eq 2129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-qs 6135 df-ni 6494 df-nqqs 6538 df-inp 6656 |
| This theorem is referenced by: genpelvl 6702 genpelvu 6703 plpvlu 6728 mpvlu 6729 |
| Copyright terms: Public domain | W3C validator |