ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen Unicode version

Theorem idssen 6280
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen  |-  _I  C_  ~~

Proof of Theorem idssen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4483 . 2  |-  Rel  _I
2 vex 2604 . . . . 5  |-  y  e. 
_V
32ideq 4506 . . . 4  |-  ( x  _I  y  <->  x  =  y )
4 vex 2604 . . . . 5  |-  x  e. 
_V
5 eqeng 6269 . . . . 5  |-  ( x  e.  _V  ->  (
x  =  y  ->  x  ~~  y ) )
64, 5ax-mp 7 . . . 4  |-  ( x  =  y  ->  x  ~~  y )
73, 6sylbi 119 . . 3  |-  ( x  _I  y  ->  x  ~~  y )
8 df-br 3786 . . 3  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
9 df-br 3786 . . 3  |-  ( x 
~~  y  <->  <. x ,  y >.  e.  ~~  )
107, 8, 93imtr3i 198 . 2  |-  ( <.
x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ~~  )
111, 10relssi 4449 1  |-  _I  C_  ~~
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   _Vcvv 2601    C_ wss 2973   <.cop 3401   class class class wbr 3785    _I cid 4043    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-en 6245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator