ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imain Unicode version

Theorem imain 5001
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  =  ( ( F " A
)  i^i  ( F " B ) ) )

Proof of Theorem imain
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imainlem 5000 . . 3  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )
21a1i 9 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) ) )
3 eeanv 1848 . . . . . 6  |-  ( E. x E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) ) )
4 simprll 503 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  A )
5 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  x F y )  ->  x F y )
6 simpr 108 . . . . . . . . . . . . . 14  |-  ( ( z  e.  B  /\  z F y )  -> 
z F y )
75, 6anim12i 331 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  -> 
( x F y  /\  z F y ) )
8 funcnveq 4982 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' F  <->  A. x A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z )
)
98biimpi 118 . . . . . . . . . . . . . . . 16  |-  ( Fun  `' F  ->  A. x A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z ) )
10919.21bi 1490 . . . . . . . . . . . . . . 15  |-  ( Fun  `' F  ->  A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z )
)
111019.21bbi 1491 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  ( ( x F y  /\  z F y )  ->  x  =  z )
)
1211imp 122 . . . . . . . . . . . . 13  |-  ( ( Fun  `' F  /\  ( x F y  /\  z F y ) )  ->  x  =  z )
137, 12sylan2 280 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  =  z )
14 simprrl 505 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  z  e.  B )
1513, 14eqeltrd 2155 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  B )
16 elin 3155 . . . . . . . . . . 11  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
174, 15, 16sylanbrc 408 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  ( A  i^i  B ) )
18 simprlr 504 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x F
y )
1917, 18jca 300 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  ( x  e.  ( A  i^i  B
)  /\  x F
y ) )
2019ex 113 . . . . . . . 8  |-  ( Fun  `' F  ->  ( ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  -> 
( x  e.  ( A  i^i  B )  /\  x F y ) ) )
2120exlimdv 1740 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  ->  ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
2221eximdv 1801 . . . . . 6  |-  ( Fun  `' F  ->  ( E. x E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  ->  E. x ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
233, 22syl5bir 151 . . . . 5  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) )  ->  E. x ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
24 df-rex 2354 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
25 df-rex 2354 . . . . . 6  |-  ( E. z  e.  B  z F y  <->  E. z
( z  e.  B  /\  z F y ) )
2624, 25anbi12i 447 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) ) )
27 df-rex 2354 . . . . 5  |-  ( E. x  e.  ( A  i^i  B ) x F y  <->  E. x
( x  e.  ( A  i^i  B )  /\  x F y ) )
2823, 26, 273imtr4g 203 . . . 4  |-  ( Fun  `' F  ->  ( ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y )  ->  E. x  e.  ( A  i^i  B ) x F y ) )
2928ss2abdv 3067 . . 3  |-  ( Fun  `' F  ->  { y  |  ( E. x  e.  A  x F
y  /\  E. z  e.  B  z F
y ) }  C_  { y  |  E. x  e.  ( A  i^i  B
) x F y } )
30 dfima2 4690 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
31 dfima2 4690 . . . . 5  |-  ( F
" B )  =  { y  |  E. z  e.  B  z F y }
3230, 31ineq12i 3165 . . . 4  |-  ( ( F " A )  i^i  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  i^i  { y  |  E. z  e.  B  z F
y } )
33 inab 3232 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  i^i  {
y  |  E. z  e.  B  z F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y ) }
3432, 33eqtri 2101 . . 3  |-  ( ( F " A )  i^i  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y ) }
35 dfima2 4690 . . 3  |-  ( F
" ( A  i^i  B ) )  =  {
y  |  E. x  e.  ( A  i^i  B
) x F y }
3629, 34, 353sstr4g 3040 . 2  |-  ( Fun  `' F  ->  ( ( F " A )  i^i  ( F " B ) )  C_  ( F " ( A  i^i  B ) ) )
372, 36eqssd 3016 1  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  =  ( ( F " A
)  i^i  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   E.wrex 2349    i^i cin 2972    C_ wss 2973   class class class wbr 3785   `'ccnv 4362   "cima 4366   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924
This theorem is referenced by:  inpreima  5314
  Copyright terms: Public domain W3C validator