| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imain | Unicode version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imainlem 5000 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eeanv 1848 |
. . . . . 6
| |
| 4 | simprll 503 |
. . . . . . . . . . 11
| |
| 5 | simpr 108 |
. . . . . . . . . . . . . 14
| |
| 6 | simpr 108 |
. . . . . . . . . . . . . 14
| |
| 7 | 5, 6 | anim12i 331 |
. . . . . . . . . . . . 13
|
| 8 | funcnveq 4982 |
. . . . . . . . . . . . . . . . 17
| |
| 9 | 8 | biimpi 118 |
. . . . . . . . . . . . . . . 16
|
| 10 | 9 | 19.21bi 1490 |
. . . . . . . . . . . . . . 15
|
| 11 | 10 | 19.21bbi 1491 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | imp 122 |
. . . . . . . . . . . . 13
|
| 13 | 7, 12 | sylan2 280 |
. . . . . . . . . . . 12
|
| 14 | simprrl 505 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqeltrd 2155 |
. . . . . . . . . . 11
|
| 16 | elin 3155 |
. . . . . . . . . . 11
| |
| 17 | 4, 15, 16 | sylanbrc 408 |
. . . . . . . . . 10
|
| 18 | simprlr 504 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | jca 300 |
. . . . . . . . 9
|
| 20 | 19 | ex 113 |
. . . . . . . 8
|
| 21 | 20 | exlimdv 1740 |
. . . . . . 7
|
| 22 | 21 | eximdv 1801 |
. . . . . 6
|
| 23 | 3, 22 | syl5bir 151 |
. . . . 5
|
| 24 | df-rex 2354 |
. . . . . 6
| |
| 25 | df-rex 2354 |
. . . . . 6
| |
| 26 | 24, 25 | anbi12i 447 |
. . . . 5
|
| 27 | df-rex 2354 |
. . . . 5
| |
| 28 | 23, 26, 27 | 3imtr4g 203 |
. . . 4
|
| 29 | 28 | ss2abdv 3067 |
. . 3
|
| 30 | dfima2 4690 |
. . . . 5
| |
| 31 | dfima2 4690 |
. . . . 5
| |
| 32 | 30, 31 | ineq12i 3165 |
. . . 4
|
| 33 | inab 3232 |
. . . 4
| |
| 34 | 32, 33 | eqtri 2101 |
. . 3
|
| 35 | dfima2 4690 |
. . 3
| |
| 36 | 29, 34, 35 | 3sstr4g 3040 |
. 2
|
| 37 | 2, 36 | eqssd 3016 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 |
| This theorem is referenced by: inpreima 5314 |
| Copyright terms: Public domain | W3C validator |