ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem Unicode version

Theorem funimaexglem 5002
Description: Lemma for funimaexg 5003. It constitutes the interesting part of funimaexg 5003, in which  B 
C_  dom  A. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )

Proof of Theorem funimaexglem
Dummy variables  b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 4948 . . . . . . . . . 10  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
21simprbi 269 . . . . . . . . 9  |-  ( Fun 
A  ->  A. x  e.  dom  A E* y  x A y )
323ad2ant1 959 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  dom  A E* y  x A y )
4 ssralv 3058 . . . . . . . . 9  |-  ( B 
C_  dom  A  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
543ad2ant3 961 . . . . . . . 8  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A. x  e.  dom  A E* y  x A y  ->  A. x  e.  B  E* y  x A y ) )
63, 5mpd 13 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. x  e.  B  E* y  x A y )
76alrimiv 1795 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  A. z A. x  e.  B  E* y  x A
y )
8 sseq1 3020 . . . . . . . . . . . . . . . . 17  |-  ( b  =  B  ->  (
b  C_  dom  A  <->  B  C_  dom  A ) )
98biimpar 291 . . . . . . . . . . . . . . . 16  |-  ( ( b  =  B  /\  B  C_  dom  A )  ->  b  C_  dom  A )
1093adant1 956 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  b  C_ 
dom  A )
11 simp1 938 . . . . . . . . . . . . . . 15  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  Fun  A )
1210, 11jca 300 . . . . . . . . . . . . . 14  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  (
b  C_  dom  A  /\  Fun  A ) )
13 dffun8 4949 . . . . . . . . . . . . . . . . . 18  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
1413simprbi 269 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
A  ->  A. x  e.  dom  A E! y  x A y )
1514adantl 271 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  dom  A E! y  x A y )
16 ssel 2993 . . . . . . . . . . . . . . . . 17  |-  ( b 
C_  dom  A  ->  ( x  e.  b  ->  x  e.  dom  A ) )
1716adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  x  e.  dom  A ) )
18 rsp 2411 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  dom  A E! y  x A y  ->  ( x  e. 
dom  A  ->  E! y  x A y ) )
1915, 17, 18sylsyld 57 . . . . . . . . . . . . . . 15  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  (
x  e.  b  ->  E! y  x A
y ) )
2019ralrimiv 2433 . . . . . . . . . . . . . 14  |-  ( ( b  C_  dom  A  /\  Fun  A )  ->  A. x  e.  b  E! y  x A y )
21 zfrep6 3895 . . . . . . . . . . . . . 14  |-  ( A. x  e.  b  E! y  x A y  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
2212, 20, 213syl 17 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  b  E. y  e.  z  x A y )
23 raleq 2549 . . . . . . . . . . . . . . 15  |-  ( b  =  B  ->  ( A. x  e.  b  E. y  e.  z  x A y  <->  A. x  e.  B  E. y  e.  z  x A
y ) )
2423exbidv 1746 . . . . . . . . . . . . . 14  |-  ( b  =  B  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
25243ad2ant2 960 . . . . . . . . . . . . 13  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  ( E. z A. x  e.  b  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y  e.  z  x A y ) )
2622, 25mpbid 145 . . . . . . . . . . . 12  |-  ( ( Fun  A  /\  b  =  B  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
27263com12 1142 . . . . . . . . . . 11  |-  ( ( b  =  B  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
28273expib 1141 . . . . . . . . . 10  |-  ( b  =  B  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
2928vtocleg 2669 . . . . . . . . 9  |-  ( B  e.  C  ->  (
( Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A
y ) )
30293impib 1136 . . . . . . . 8  |-  ( ( B  e.  C  /\  Fun  A  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
31303com12 1142 . . . . . . 7  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y  e.  z  x A y )
32 df-rex 2354 . . . . . . . . . 10  |-  ( E. y  e.  z  x A y  <->  E. y
( y  e.  z  /\  x A y ) )
33 exancom 1539 . . . . . . . . . 10  |-  ( E. y ( y  e.  z  /\  x A y )  <->  E. y
( x A y  /\  y  e.  z ) )
3432, 33bitri 182 . . . . . . . . 9  |-  ( E. y  e.  z  x A y  <->  E. y
( x A y  /\  y  e.  z ) )
3534ralbii 2372 . . . . . . . 8  |-  ( A. x  e.  B  E. y  e.  z  x A y  <->  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )
3635exbii 1536 . . . . . . 7  |-  ( E. z A. x  e.  B  E. y  e.  z  x A y  <->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z )
)
3731, 36sylib 120 . . . . . 6  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
38 19.29 1551 . . . . . . 7  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
39 nfcv 2219 . . . . . . . . . . 11  |-  F/_ y B
40 nfmo1 1953 . . . . . . . . . . 11  |-  F/ y E* y  x A y
4139, 40nfralxy 2402 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E* y  x A
y
42 nfe1 1425 . . . . . . . . . . 11  |-  F/ y E. y ( x A y  /\  y  e.  z )
4339, 42nfralxy 2402 . . . . . . . . . 10  |-  F/ y A. x  e.  B  E. y ( x A y  /\  y  e.  z )
4441, 43nfan 1497 . . . . . . . . 9  |-  F/ y ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )
45 r19.26 2485 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  <->  ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) ) )
46 mopick 2019 . . . . . . . . . . 11  |-  ( ( E* y  x A y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  (
x A y  -> 
y  e.  z ) )
4746ralimi 2426 . . . . . . . . . 10  |-  ( A. x  e.  B  ( E* y  x A
y  /\  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4845, 47sylbir 133 . . . . . . . . 9  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. x  e.  B  ( x A y  ->  y  e.  z ) )
4944, 48alrimi 1455 . . . . . . . 8  |-  ( ( A. x  e.  B  E* y  x A
y  /\  A. x  e.  B  E. y
( x A y  /\  y  e.  z ) )  ->  A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
5049eximi 1531 . . . . . . 7  |-  ( E. z ( A. x  e.  B  E* y  x A y  /\  A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
5138, 50syl 14 . . . . . 6  |-  ( ( A. z A. x  e.  B  E* y  x A y  /\  E. z A. x  e.  B  E. y ( x A y  /\  y  e.  z ) )  ->  E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z ) )
527, 37, 51syl2anc 403 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y A. x  e.  B  ( x A y  ->  y  e.  z ) )
53 r19.23v 2469 . . . . . . 7  |-  ( A. x  e.  B  (
x A y  -> 
y  e.  z )  <-> 
( E. x  e.  B  x A y  ->  y  e.  z ) )
5453albii 1399 . . . . . 6  |-  ( A. y A. x  e.  B  ( x A y  ->  y  e.  z )  <->  A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5554exbii 1536 . . . . 5  |-  ( E. z A. y A. x  e.  B  (
x A y  -> 
y  e.  z )  <->  E. z A. y ( E. x  e.  B  x A y  ->  y  e.  z ) )
5652, 55sylib 120 . . . 4  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
57 abss 3063 . . . . 5  |-  ( { y  |  E. x  e.  B  x A
y }  C_  z  <->  A. y ( E. x  e.  B  x A
y  ->  y  e.  z ) )
5857exbii 1536 . . . 4  |-  ( E. z { y  |  E. x  e.  B  x A y }  C_  z 
<->  E. z A. y
( E. x  e.  B  x A y  ->  y  e.  z ) )
5956, 58sylibr 132 . . 3  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
60 dfima2 4690 . . . . 5  |-  ( A
" B )  =  { y  |  E. x  e.  B  x A y }
6160sseq1i 3023 . . . 4  |-  ( ( A " B ) 
C_  z  <->  { y  |  E. x  e.  B  x A y }  C_  z )
6261exbii 1536 . . 3  |-  ( E. z ( A " B )  C_  z  <->  E. z { y  |  E. x  e.  B  x A y }  C_  z )
6359, 62sylibr 132 . 2  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  E. z
( A " B
)  C_  z )
64 vex 2604 . . . 4  |-  z  e. 
_V
6564ssex 3915 . . 3  |-  ( ( A " B ) 
C_  z  ->  ( A " B )  e. 
_V )
6665exlimiv 1529 . 2  |-  ( E. z ( A " B )  C_  z  ->  ( A " B
)  e.  _V )
6763, 66syl 14 1  |-  ( ( Fun  A  /\  B  e.  C  /\  B  C_  dom  A )  ->  ( A " B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   E!weu 1941   E*wmo 1942   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601    C_ wss 2973   class class class wbr 3785   dom cdm 4363   "cima 4366   Rel wrel 4368   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924
This theorem is referenced by:  funimaexg  5003
  Copyright terms: Public domain W3C validator