ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqeq1 Unicode version

Theorem iseqeq1 9434
Description: Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
iseqeq1  |-  ( M  =  N  ->  seq M (  .+  ,  F ,  S )  =  seq N (  .+  ,  F ,  S ) )

Proof of Theorem iseqeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( M  =  N  ->  M  =  N )
2 fveq2 5198 . . . . . 6  |-  ( M  =  N  ->  ( F `  M )  =  ( F `  N ) )
31, 2opeq12d 3578 . . . . 5  |-  ( M  =  N  ->  <. M , 
( F `  M
) >.  =  <. N , 
( F `  N
) >. )
4 freceq2 6003 . . . . 5  |-  ( <. M ,  ( F `  M ) >.  =  <. N ,  ( F `  N ) >.  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
53, 4syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
6 fveq2 5198 . . . . . 6  |-  ( M  =  N  ->  ( ZZ>=
`  M )  =  ( ZZ>= `  N )
)
7 eqid 2081 . . . . . 6  |-  S  =  S
8 mpt2eq12 5585 . . . . . 6  |-  ( ( ( ZZ>= `  M )  =  ( ZZ>= `  N
)  /\  S  =  S )  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
96, 7, 8sylancl 404 . . . . 5  |-  ( M  =  N  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
10 freceq1 6002 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
119, 10syl 14 . . . 4  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. N ,  ( F `  N ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
125, 11eqtrd 2113 . . 3  |-  ( M  =  N  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  N ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
1312rneqd 4581 . 2  |-  ( M  =  N  ->  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  N ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. ) )
14 df-iseq 9432 . 2  |-  seq M
(  .+  ,  F ,  S )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
15 df-iseq 9432 . 2  |-  seq N
(  .+  ,  F ,  S )  =  ran frec ( ( x  e.  (
ZZ>= `  N ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. N , 
( F `  N
) >. )
1613, 14, 153eqtr4g 2138 1  |-  ( M  =  N  ->  seq M (  .+  ,  F ,  S )  =  seq N (  .+  ,  F ,  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   <.cop 3401   ran crn 4364   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534  freccfrec 6000   1c1 6982    + caddc 6984   ZZ>=cuz 8619    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-iseq 9432
This theorem is referenced by:  iseqid  9467  iseqz  9469  ibcval5  9690  bcn2  9691  iiserex  10177
  Copyright terms: Public domain W3C validator