ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid Unicode version

Theorem iseqid 9467
Description: Discard the first few terms of a sequence that starts with all zeroes (or whatever the identity  Z is for operation  .+). (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
iseqid.2  |-  ( ph  ->  Z  e.  S )
iseqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
iseqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
iseqid.s  |-  ( ph  ->  S  e.  V )
iseqid.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqid  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S )  |`  ( ZZ>=
`  N ) )  =  seq N ( 
.+  ,  F ,  S ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, Z, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem iseqid
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 8628 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 iseqid.s . . . . 5  |-  ( ph  ->  S  e.  V )
5 simpr 108 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  N )
)
61adantr 270 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
7 uztrn 8635 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
85, 6, 7syl2anc 403 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  M )
)
9 iseqid.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
108, 9syldan 276 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  ( F `  x )  e.  S
)
11 iseqid.cl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
123, 4, 10, 11iseq1 9442 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ,  S ) `  N
)  =  ( F `
 N ) )
13 iseqeq1 9434 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F ,  S )  =  seq M (  .+  ,  F ,  S ) )
1413fveq1d 5200 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ,  S ) `  N )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
1514eqeq1d 2089 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ,  S ) `
 N )  =  ( F `  N
)  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  ( F `
 N ) ) )
1612, 15syl5ibcom 153 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  ( F `
 N ) ) )
17 eluzel2 8624 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
181, 17syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918adantr 270 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
20 simpr 108 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
214adantr 270 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  S  e.  V )
229adantlr 460 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2311adantlr 460 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2419, 20, 21, 22, 23iseqm1 9447 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
25 iseqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
26 iseqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
2726ralrimiva 2434 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
28 oveq2 5540 . . . . . . . . . . 11  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
29 id 19 . . . . . . . . . . 11  |-  ( x  =  Z  ->  x  =  Z )
3028, 29eqeq12d 2095 . . . . . . . . . 10  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
3130rspcv 2697 . . . . . . . . 9  |-  ( Z  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  Z )  =  Z ) )
3225, 27, 31sylc 61 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
3332adantr 270 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
34 eluzp1m1 8642 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
3518, 34sylan 277 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
36 iseqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3736adantlr 460 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3825adantr 270 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  Z  e.  S )
3933, 35, 37, 38, 21, 22, 23iseqid3s 9466 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  ( N  -  1 ) )  =  Z )
4039oveq1d 5547 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( N  -  1 ) )  .+  ( F `  N )
)  =  ( Z 
.+  ( F `  N ) ) )
41 iseqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
4241adantr 270 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
4327adantr 270 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
44 oveq2 5540 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
45 id 19 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
4644, 45eqeq12d 2095 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
4746rspcv 2697 . . . . . 6  |-  ( ( F `  N )  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  ( F `  N ) )  =  ( F `  N
) ) )
4842, 43, 47sylc 61 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
4924, 40, 483eqtrd 2117 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  ( F `  N ) )
5049ex 113 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ,  S ) `
 N )  =  ( F `  N
) ) )
51 uzp1 8652 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
521, 51syl 14 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5316, 50, 52mpjaod 670 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  ( F `
 N ) )
54 eqidd 2082 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
551, 53, 4, 9, 10, 11, 54iseqfeq2 9449 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S )  |`  ( ZZ>=
`  N ) )  =  seq N ( 
.+  ,  F ,  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433   A.wral 2348    |` cres 4365   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153  df-iseq 9432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator