| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqz | Unicode version | ||
| Description: If the operation |
| Ref | Expression |
|---|---|
| iseqhomo.1 |
|
| iseqhomo.2 |
|
| iseqhomo.s |
|
| iseqz.3 |
|
| iseqz.4 |
|
| iseqz.5 |
|
| iseqz.6 |
|
| iseqz.7 |
|
| Ref | Expression |
|---|---|
| iseqz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqz.5 |
. . 3
| |
| 2 | elfzuz3 9042 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | fveq2 5198 |
. . . . 5
| |
| 5 | 4 | eqeq1d 2089 |
. . . 4
|
| 6 | 5 | imbi2d 228 |
. . 3
|
| 7 | fveq2 5198 |
. . . . 5
| |
| 8 | 7 | eqeq1d 2089 |
. . . 4
|
| 9 | 8 | imbi2d 228 |
. . 3
|
| 10 | fveq2 5198 |
. . . . 5
| |
| 11 | 10 | eqeq1d 2089 |
. . . 4
|
| 12 | 11 | imbi2d 228 |
. . 3
|
| 13 | fveq2 5198 |
. . . . 5
| |
| 14 | 13 | eqeq1d 2089 |
. . . 4
|
| 15 | 14 | imbi2d 228 |
. . 3
|
| 16 | elfzuz 9041 |
. . . . . . . . . 10
| |
| 17 | 1, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | eluzelz 8628 |
. . . . . . . . 9
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . 8
|
| 20 | iseqhomo.s |
. . . . . . . 8
| |
| 21 | simpr 108 |
. . . . . . . . . 10
| |
| 22 | 17 | adantr 270 |
. . . . . . . . . 10
|
| 23 | uztrn 8635 |
. . . . . . . . . 10
| |
| 24 | 21, 22, 23 | syl2anc 403 |
. . . . . . . . 9
|
| 25 | iseqhomo.2 |
. . . . . . . . 9
| |
| 26 | 24, 25 | syldan 276 |
. . . . . . . 8
|
| 27 | iseqhomo.1 |
. . . . . . . 8
| |
| 28 | 19, 20, 26, 27 | iseq1 9442 |
. . . . . . 7
|
| 29 | iseqz.7 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtrd 2113 |
. . . . . 6
|
| 31 | iseqeq1 9434 |
. . . . . . . 8
| |
| 32 | 31 | fveq1d 5200 |
. . . . . . 7
|
| 33 | 32 | eqeq1d 2089 |
. . . . . 6
|
| 34 | 30, 33 | syl5ibcom 153 |
. . . . 5
|
| 35 | eluzel2 8624 |
. . . . . . . . . 10
| |
| 36 | 17, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 36 | adantr 270 |
. . . . . . . 8
|
| 38 | simpr 108 |
. . . . . . . 8
| |
| 39 | 20 | adantr 270 |
. . . . . . . 8
|
| 40 | 25 | adantlr 460 |
. . . . . . . 8
|
| 41 | 27 | adantlr 460 |
. . . . . . . 8
|
| 42 | 37, 38, 39, 40, 41 | iseqm1 9447 |
. . . . . . 7
|
| 43 | 29 | adantr 270 |
. . . . . . . 8
|
| 44 | 43 | oveq2d 5548 |
. . . . . . 7
|
| 45 | oveq1 5539 |
. . . . . . . . 9
| |
| 46 | 45 | eqeq1d 2089 |
. . . . . . . 8
|
| 47 | iseqz.4 |
. . . . . . . . . 10
| |
| 48 | 47 | ralrimiva 2434 |
. . . . . . . . 9
|
| 49 | 48 | adantr 270 |
. . . . . . . 8
|
| 50 | eluzp1m1 8642 |
. . . . . . . . . 10
| |
| 51 | 36, 50 | sylan 277 |
. . . . . . . . 9
|
| 52 | 51, 39, 40, 41 | iseqcl 9443 |
. . . . . . . 8
|
| 53 | 46, 49, 52 | rspcdva 2707 |
. . . . . . 7
|
| 54 | 42, 44, 53 | 3eqtrd 2117 |
. . . . . 6
|
| 55 | 54 | ex 113 |
. . . . 5
|
| 56 | uzp1 8652 |
. . . . . 6
| |
| 57 | 17, 56 | syl 14 |
. . . . 5
|
| 58 | 34, 55, 57 | mpjaod 670 |
. . . 4
|
| 59 | 58 | a1i 9 |
. . 3
|
| 60 | simpr 108 |
. . . . . . . . . 10
| |
| 61 | 17 | adantr 270 |
. . . . . . . . . 10
|
| 62 | uztrn 8635 |
. . . . . . . . . 10
| |
| 63 | 60, 61, 62 | syl2anc 403 |
. . . . . . . . 9
|
| 64 | 20 | adantr 270 |
. . . . . . . . 9
|
| 65 | 25 | adantlr 460 |
. . . . . . . . 9
|
| 66 | 27 | adantlr 460 |
. . . . . . . . 9
|
| 67 | 63, 64, 65, 66 | iseqp1 9445 |
. . . . . . . 8
|
| 68 | 67 | adantr 270 |
. . . . . . 7
|
| 69 | simpr 108 |
. . . . . . . 8
| |
| 70 | 69 | oveq1d 5547 |
. . . . . . 7
|
| 71 | oveq2 5540 |
. . . . . . . . . 10
| |
| 72 | 71 | eqeq1d 2089 |
. . . . . . . . 9
|
| 73 | iseqz.3 |
. . . . . . . . . . 11
| |
| 74 | 73 | ralrimiva 2434 |
. . . . . . . . . 10
|
| 75 | 74 | adantr 270 |
. . . . . . . . 9
|
| 76 | fveq2 5198 |
. . . . . . . . . . 11
| |
| 77 | 76 | eleq1d 2147 |
. . . . . . . . . 10
|
| 78 | 25 | ralrimiva 2434 |
. . . . . . . . . . 11
|
| 79 | 78 | adantr 270 |
. . . . . . . . . 10
|
| 80 | peano2uz 8671 |
. . . . . . . . . . 11
| |
| 81 | 63, 80 | syl 14 |
. . . . . . . . . 10
|
| 82 | 77, 79, 81 | rspcdva 2707 |
. . . . . . . . 9
|
| 83 | 72, 75, 82 | rspcdva 2707 |
. . . . . . . 8
|
| 84 | 83 | adantr 270 |
. . . . . . 7
|
| 85 | 68, 70, 84 | 3eqtrd 2117 |
. . . . . 6
|
| 86 | 85 | ex 113 |
. . . . 5
|
| 87 | 86 | expcom 114 |
. . . 4
|
| 88 | 87 | a2d 26 |
. . 3
|
| 89 | 6, 9, 12, 15, 59, 88 | uzind4 8676 |
. 2
|
| 90 | 3, 89 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 df-iseq 9432 |
| This theorem is referenced by: ibcval5 9690 |
| Copyright terms: Public domain | W3C validator |