ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqz Unicode version

Theorem iseqz 9469
Description: If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqhomo.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqhomo.2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqhomo.s  |-  ( ph  ->  S  e.  V )
iseqz.3  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
iseqz.4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
iseqz.5  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqz.6  |-  ( ph  ->  N  e.  V )
iseqz.7  |-  ( ph  ->  ( F `  K
)  =  Z )
Assertion
Ref Expression
iseqz  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  Z )
Distinct variable groups:    x, y, F   
x, M, y    x, N, y    ph, x, y   
x, K, y    x,  .+ , y    x, S, y   
x, Z, y
Allowed substitution hints:    V( x, y)

Proof of Theorem iseqz
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqz.5 . . 3  |-  ( ph  ->  K  e.  ( M ... N ) )
2 elfzuz3 9042 . . 3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )
4 fveq2 5198 . . . . 5  |-  ( w  =  K  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 K ) )
54eqeq1d 2089 . . . 4  |-  ( w  =  K  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  Z ) )
65imbi2d 228 . . 3  |-  ( w  =  K  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 K )  =  Z ) ) )
7 fveq2 5198 . . . . 5  |-  ( w  =  k  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 k ) )
87eqeq1d 2089 . . . 4  |-  ( w  =  k  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z ) )
98imbi2d 228 . . 3  |-  ( w  =  k  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 k )  =  Z ) ) )
10 fveq2 5198 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) ) )
1110eqeq1d 2089 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  Z ) )
1211imbi2d 228 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
13 fveq2 5198 . . . . 5  |-  ( w  =  N  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
1413eqeq1d 2089 . . . 4  |-  ( w  =  N  ->  (
(  seq M (  .+  ,  F ,  S ) `
 w )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  Z ) )
1514imbi2d 228 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (  seq M (  .+  ,  F ,  S ) `  w )  =  Z )  <->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 N )  =  Z ) ) )
16 elfzuz 9041 . . . . . . . . . 10  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
171, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )
18 eluzelz 8628 . . . . . . . . 9  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ZZ )
1917, 18syl 14 . . . . . . . 8  |-  ( ph  ->  K  e.  ZZ )
20 iseqhomo.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
21 simpr 108 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  K )
)
2217adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
23 uztrn 8635 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
2421, 22, 23syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  x  e.  ( ZZ>= `  M )
)
25 iseqhomo.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2624, 25syldan 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  K )
)  ->  ( F `  x )  e.  S
)
27 iseqhomo.1 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2819, 20, 26, 27iseq1 9442 . . . . . . 7  |-  ( ph  ->  (  seq K ( 
.+  ,  F ,  S ) `  K
)  =  ( F `
 K ) )
29 iseqz.7 . . . . . . 7  |-  ( ph  ->  ( F `  K
)  =  Z )
3028, 29eqtrd 2113 . . . . . 6  |-  ( ph  ->  (  seq K ( 
.+  ,  F ,  S ) `  K
)  =  Z )
31 iseqeq1 9434 . . . . . . . 8  |-  ( K  =  M  ->  seq K (  .+  ,  F ,  S )  =  seq M (  .+  ,  F ,  S ) )
3231fveq1d 5200 . . . . . . 7  |-  ( K  =  M  ->  (  seq K (  .+  ,  F ,  S ) `  K )  =  (  seq M (  .+  ,  F ,  S ) `
 K ) )
3332eqeq1d 2089 . . . . . 6  |-  ( K  =  M  ->  (
(  seq K (  .+  ,  F ,  S ) `
 K )  =  Z  <->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  Z ) )
3430, 33syl5ibcom 153 . . . . 5  |-  ( ph  ->  ( K  =  M  ->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  Z ) )
35 eluzel2 8624 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
3617, 35syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
3736adantr 270 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
38 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  K  e.  ( ZZ>= `  ( M  +  1 ) ) )
3920adantr 270 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  S  e.  V )
4025adantlr 460 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4127adantlr 460 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
4237, 38, 39, 40, 41iseqm1 9447 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  ( K  -  1 ) )  .+  ( F `
 K ) ) )
4329adantr 270 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  K )  =  Z )
4443oveq2d 5548 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( K  -  1 ) )  .+  ( F `  K )
)  =  ( (  seq M (  .+  ,  F ,  S ) `
 ( K  - 
1 ) )  .+  Z ) )
45 oveq1 5539 . . . . . . . . 9  |-  ( x  =  (  seq M
(  .+  ,  F ,  S ) `  ( K  -  1 ) )  ->  ( x  .+  Z )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  ( K  -  1 ) )  .+  Z ) )
4645eqeq1d 2089 . . . . . . . 8  |-  ( x  =  (  seq M
(  .+  ,  F ,  S ) `  ( K  -  1 ) )  ->  ( (
x  .+  Z )  =  Z  <->  ( (  seq M (  .+  ,  F ,  S ) `  ( K  -  1 ) )  .+  Z
)  =  Z ) )
47 iseqz.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  (
x  .+  Z )  =  Z )
4847ralrimiva 2434 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
4948adantr 270 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( x  .+  Z )  =  Z )
50 eluzp1m1 8642 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( K  -  1 )  e.  ( ZZ>= `  M ) )
5136, 50sylan 277 . . . . . . . . 9  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( K  -  1 )  e.  ( ZZ>= `  M )
)
5251, 39, 40, 41iseqcl 9443 . . . . . . . 8  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  ( K  -  1 ) )  e.  S
)
5346, 49, 52rspcdva 2707 . . . . . . 7  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( K  -  1 ) )  .+  Z
)  =  Z )
5442, 44, 533eqtrd 2117 . . . . . 6  |-  ( (
ph  /\  K  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  K )  =  Z )
5554ex 113 . . . . 5  |-  ( ph  ->  ( K  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ,  S ) `
 K )  =  Z ) )
56 uzp1 8652 . . . . . 6  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K  =  M  \/  K  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
5717, 56syl 14 . . . . 5  |-  ( ph  ->  ( K  =  M  \/  K  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5834, 55, 57mpjaod 670 . . . 4  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  K
)  =  Z )
5958a1i 9 . . 3  |-  ( K  e.  ZZ  ->  ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  K
)  =  Z ) )
60 simpr 108 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  K )
)
6117adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  K  e.  ( ZZ>= `  M )
)
62 uztrn 8635 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
6360, 61, 62syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  k  e.  ( ZZ>= `  M )
)
6420adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  S  e.  V )
6525adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
6627adantlr 460 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
6763, 64, 65, 66iseqp1 9445 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
6867adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  k
)  .+  ( F `  ( k  +  1 ) ) ) )
69 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )
7069oveq1d 5547 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  .+  ( F `  ( k  +  1 ) ) )  =  ( Z 
.+  ( F `  ( k  +  1 ) ) ) )
71 oveq2 5540 . . . . . . . . . 10  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  ( k  +  1 ) ) ) )
7271eqeq1d 2089 . . . . . . . . 9  |-  ( x  =  ( F `  ( k  +  1 ) )  ->  (
( Z  .+  x
)  =  Z  <->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z ) )
73 iseqz.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )
7473ralrimiva 2434 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
7574adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  S  ( Z  .+  x )  =  Z )
76 fveq2 5198 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  ( F `  x )  =  ( F `  ( k  +  1 ) ) )
7776eleq1d 2147 . . . . . . . . . 10  |-  ( x  =  ( k  +  1 )  ->  (
( F `  x
)  e.  S  <->  ( F `  ( k  +  1 ) )  e.  S
) )
7825ralrimiva 2434 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
7978adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
80 peano2uz 8671 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
8163, 80syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
8277, 79, 81rspcdva 2707 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( F `  ( k  +  1 ) )  e.  S
)
8372, 75, 82rspcdva 2707 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z )
8483adantr 270 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  ( Z  .+  ( F `  (
k  +  1 ) ) )  =  Z )
8568, 70, 843eqtrd 2117 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  K )
)  /\  (  seq M (  .+  ,  F ,  S ) `  k )  =  Z )  ->  (  seq M (  .+  ,  F ,  S ) `  ( k  +  1 ) )  =  Z )
8685ex 113 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  K )
)  ->  ( (  seq M (  .+  ,  F ,  S ) `  k )  =  Z  ->  (  seq M
(  .+  ,  F ,  S ) `  (
k  +  1 ) )  =  Z ) )
8786expcom 114 . . . 4  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ph  ->  ( (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z  -> 
(  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
8887a2d 26 . . 3  |-  ( k  e.  ( ZZ>= `  K
)  ->  ( ( ph  ->  (  seq M
(  .+  ,  F ,  S ) `  k
)  =  Z )  ->  ( ph  ->  (  seq M (  .+  ,  F ,  S ) `
 ( k  +  1 ) )  =  Z ) ) )
896, 9, 12, 15, 59, 88uzind4 8676 . 2  |-  ( N  e.  ( ZZ>= `  K
)  ->  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  Z ) )
903, 89mpcom 36 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284    e. wcel 1433   A.wral 2348   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029    seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  ibcval5  9690
  Copyright terms: Public domain W3C validator