| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isoini2 | Unicode version | ||
| Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| Ref | Expression |
|---|---|
| isoini2.1 |
|
| isoini2.2 |
|
| Ref | Expression |
|---|---|
| isoini2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 5467 |
. . . . . 6
| |
| 2 | f1of1 5145 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantr 270 |
. . . 4
|
| 5 | isoini2.1 |
. . . . 5
| |
| 6 | inss1 3186 |
. . . . 5
| |
| 7 | 5, 6 | eqsstri 3029 |
. . . 4
|
| 8 | f1ores 5161 |
. . . 4
| |
| 9 | 4, 7, 8 | sylancl 404 |
. . 3
|
| 10 | isoini 5477 |
. . . . 5
| |
| 11 | 5 | imaeq2i 4686 |
. . . . 5
|
| 12 | isoini2.2 |
. . . . 5
| |
| 13 | 10, 11, 12 | 3eqtr4g 2138 |
. . . 4
|
| 14 | f1oeq3 5139 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 9, 15 | mpbid 145 |
. 2
|
| 17 | df-isom 4931 |
. . . . . . 7
| |
| 18 | 17 | simprbi 269 |
. . . . . 6
|
| 19 | 18 | adantr 270 |
. . . . 5
|
| 20 | ssralv 3058 |
. . . . . 6
| |
| 21 | 20 | ralimdv 2430 |
. . . . 5
|
| 22 | 7, 19, 21 | mpsyl 64 |
. . . 4
|
| 23 | ssralv 3058 |
. . . 4
| |
| 24 | 7, 22, 23 | mpsyl 64 |
. . 3
|
| 25 | fvres 5219 |
. . . . . . 7
| |
| 26 | fvres 5219 |
. . . . . . 7
| |
| 27 | 25, 26 | breqan12d 3800 |
. . . . . 6
|
| 28 | 27 | bibi2d 230 |
. . . . 5
|
| 29 | 28 | ralbidva 2364 |
. . . 4
|
| 30 | 29 | ralbiia 2380 |
. . 3
|
| 31 | 24, 30 | sylibr 132 |
. 2
|
| 32 | df-isom 4931 |
. 2
| |
| 33 | 16, 31, 32 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-isom 4931 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |