ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmdvds Unicode version

Theorem lcmdvds 10461
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmdvds  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)

Proof of Theorem lcmdvds
StepHypRef Expression
1 id 19 . . . . . . 7  |-  ( 0 
||  K  ->  0  ||  K )
2 breq1 3788 . . . . . . . . 9  |-  ( M  =  0  ->  ( M  ||  K  <->  0  ||  K ) )
32adantl 271 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K 
<->  0  ||  K ) )
4 oveq1 5539 . . . . . . . . . 10  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
5 0z 8362 . . . . . . . . . . . 12  |-  0  e.  ZZ
6 lcmcom 10446 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0 lcm  N )  =  ( N lcm  0
) )
75, 6mpan 414 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  ( N lcm  0 ) )
8 lcm0val 10447 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
97, 8eqtrd 2113 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
104, 9sylan9eqr 2135 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1110breq1d 3795 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
123, 11imbi12d 232 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( ( M 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
131, 12mpbiri 166 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M  ||  K  ->  ( M lcm  N
)  ||  K )
)
14133ad2antl3 1102 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( M  ||  K  ->  ( M lcm  N )  ||  K ) )
1514adantrd 273 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
1615ex 113 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
17 breq1 3788 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  ||  K  <->  0  ||  K ) )
1817adantl 271 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K 
<->  0  ||  K ) )
19 oveq2 5540 . . . . . . . . . 10  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
20 lcm0val 10447 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
2119, 20sylan9eqr 2135 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
2221breq1d 3795 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( M lcm 
N )  ||  K  <->  0 
||  K ) )
2318, 22imbi12d 232 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( ( N 
||  K  ->  ( M lcm  N )  ||  K
)  <->  ( 0  ||  K  ->  0  ||  K
) ) )
241, 23mpbiri 166 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( N  ||  K  ->  ( M lcm  N
)  ||  K )
)
25243ad2antl2 1101 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( N  ||  K  ->  ( M lcm  N )  ||  K ) )
2625adantld 272 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
2726ex 113 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
) )
2816, 27jaod 669 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
29 neanior 2332 . . . . . 6  |-  ( ( M  =/=  0  /\  N  =/=  0 )  <->  -.  ( M  =  0  \/  N  =  0 ) )
30 lcmcl 10454 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  NN0 )
3130nn0zd 8467 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  e.  ZZ )
32 dvds0 10210 . . . . . . . . . . . . . . . . 17  |-  ( ( M lcm  N )  e.  ZZ  ->  ( M lcm  N )  ||  0 )
3331, 32syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N ) 
||  0 )
3433a1d 22 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) )
3534adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N )  ||  0
) )
36 breq2 3789 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( M  ||  K  <->  M  ||  0
) )
37 breq2 3789 . . . . . . . . . . . . . . . . 17  |-  ( K  =  0  ->  ( N  ||  K  <->  N  ||  0
) )
3836, 37anbi12d 456 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M  ||  K  /\  N  ||  K )  <-> 
( M  ||  0  /\  N  ||  0 ) ) )
39 breq2 3789 . . . . . . . . . . . . . . . 16  |-  ( K  =  0  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  0 ) )
4038, 39imbi12d 232 . . . . . . . . . . . . . . 15  |-  ( K  =  0  ->  (
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K )  <-> 
( ( M  ||  0  /\  N  ||  0
)  ->  ( M lcm  N )  ||  0 ) ) )
4140adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )  <->  ( ( M  ||  0  /\  N  ||  0 )  ->  ( M lcm  N
)  ||  0 ) ) )
4235, 41mpbird 165 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4342adantrl 461 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  -> 
( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
4443adantllr 464 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4544adantlrr 466 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
4645anassrs 392 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
47 nnabscl 9986 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
48 nnabscl 9986 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
49 nnabscl 9986 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( abs `  K
)  e.  NN )
50 lcmgcdlem 10459 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( ( abs `  M ) lcm  ( abs `  N
) )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) )  =  ( abs `  (
( abs `  M
)  x.  ( abs `  N ) ) )  /\  ( ( ( abs `  K )  e.  NN  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) ) )
5150simprd 112 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( abs `  K )  e.  NN  /\  ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5249, 51sylani 398 . . . . . . . . . . . . 13  |-  ( ( ( abs `  M
)  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5347, 48, 52syl2an 283 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( K  e.  ZZ  /\  K  =/=  0 )  /\  (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) ) )  ->  (
( abs `  M
) lcm  ( abs `  N
) )  ||  ( abs `  K ) ) )
5453expdimp 255 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) ) )
55 dvdsabsb 10214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  M 
||  ( abs `  K
) ) )
56 zabscl 9972 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ZZ  ->  ( abs `  K )  e.  ZZ )
57 absdvdsb 10213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5856, 57sylan2 280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  ( abs `  K )  <->  ( abs `  M )  ||  ( abs `  K ) ) )
5955, 58bitrd 186 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  K  <->  ( abs `  M ) 
||  ( abs `  K
) ) )
6059adantlr 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( M  ||  K 
<->  ( abs `  M
)  ||  ( abs `  K ) ) )
61 dvdsabsb 10214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  N 
||  ( abs `  K
) ) )
62 absdvdsb 10213 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  ( abs `  K )  e.  ZZ )  -> 
( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6356, 62sylan2 280 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  ( abs `  K )  <->  ( abs `  N )  ||  ( abs `  K ) ) )
6461, 63bitrd 186 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  ||  K  <->  ( abs `  N ) 
||  ( abs `  K
) ) )
6564adantll 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( N  ||  K 
<->  ( abs `  N
)  ||  ( abs `  K ) ) )
6660, 65anbi12d 456 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M 
||  K  /\  N  ||  K )  <->  ( ( abs `  M )  ||  ( abs `  K )  /\  ( abs `  N
)  ||  ( abs `  K ) ) ) )
6766bicomd 139 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  <-> 
( M  ||  K  /\  N  ||  K ) ) )
68 lcmabs 10458 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
) lcm  ( abs `  N
) )  =  ( M lcm  N ) )
6968breq1d 3795 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K )  <-> 
( M lcm  N ) 
||  ( abs `  K
) ) )
7069adantr 270 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
71 dvdsabsb 10214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M lcm  N )  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M lcm  N ) 
||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7231, 71sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( M lcm 
N )  ||  K  <->  ( M lcm  N )  ||  ( abs `  K ) ) )
7370, 72bitr4d 189 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( abs `  M ) lcm  ( abs `  N
) )  ||  ( abs `  K )  <->  ( M lcm  N )  ||  K ) )
7467, 73imbi12d 232 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7574adantrr 462 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7675adantllr 464 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( ( ( abs `  M ) 
||  ( abs `  K
)  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) )  ||  ( abs `  K ) )  <->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7776adantlrr 466 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
( ( abs `  M
)  ||  ( abs `  K )  /\  ( abs `  N )  ||  ( abs `  K ) )  ->  ( ( abs `  M ) lcm  ( abs `  N ) ) 
||  ( abs `  K
) )  <->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
7854, 77mpbid 145 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
7978anassrs 392 . . . . . . . . 9  |-  ( ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  /\  K  =/=  0
)  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) )
80 zdceq 8423 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ )  -> DECID  K  =  0 )
815, 80mpan2 415 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  -> DECID  K  =  0
)
82 exmiddc 777 . . . . . . . . . . . 12  |-  (DECID  K  =  0  ->  ( K  =  0  \/  -.  K  =  0 ) )
8381, 82syl 14 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  -.  K  =  0
) )
84 df-ne 2246 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
8584orbi2i 711 . . . . . . . . . . 11  |-  ( ( K  =  0  \/  K  =/=  0 )  <-> 
( K  =  0  \/  -.  K  =  0 ) )
8683, 85sylibr 132 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  =  0  \/  K  =/=  0 ) )
8786adantl 271 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( K  =  0  \/  K  =/=  0
) )
8846, 79, 87mpjaodan 744 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  K  e.  ZZ )  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) )
8988ex 113 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9089an4s 552 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  -> 
( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K
)  ->  ( M lcm  N )  ||  K ) ) )
9129, 90sylan2br 282 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( K  e.  ZZ  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
9291impancom 256 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M 
||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
93923impa 1133 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
94933comr 1146 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( ( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N )  ||  K
) ) )
95 lcmmndc 10444 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
96 exmiddc 777 . . . 4  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
9795, 96syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0
) ) )
98973adant1 956 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  \/  N  =  0 )  \/  -.  ( M  =  0  \/  N  =  0 ) ) )
9928, 94, 98mpjaod 670 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  ||  K  /\  N  ||  K )  ->  ( M lcm  N
)  ||  K )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   0cc0 6981    x. cmul 6986   NNcn 8039   ZZcz 8351   abscabs 9883    || cdvds 10195    gcd cgcd 10338   lcm clcm 10442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-lcm 10443
This theorem is referenced by:  lcmdvdsb  10466
  Copyright terms: Public domain W3C validator