ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri Unicode version

Theorem lteupri 6807
Description: The difference from ltexpri 6803 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem lteupri
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ltexpri 6803 . 2  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
2 ltrelpr 6695 . . . . 5  |-  <P  C_  ( P.  X.  P. )
32brel 4410 . . . 4  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
43simpld 110 . . 3  |-  ( A 
<P  B  ->  A  e. 
P. )
5 eqtr3 2100 . . . . . . . 8  |-  ( ( ( A  +P.  x
)  =  B  /\  ( A  +P.  y )  =  B )  -> 
( A  +P.  x
)  =  ( A  +P.  y ) )
6 addcanprg 6806 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( A  +P.  x
)  =  ( A  +P.  y )  ->  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
873expa 1138 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  P. )  /\  y  e.  P. )  ->  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
98ralrimiva 2434 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  A. y  e.  P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
109ralrimiva 2434 . . . 4  |-  ( A  e.  P.  ->  A. x  e.  P.  A. y  e. 
P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
11 oveq2 5540 . . . . . 6  |-  ( x  =  y  ->  ( A  +P.  x )  =  ( A  +P.  y
) )
1211eqeq1d 2089 . . . . 5  |-  ( x  =  y  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  y )  =  B ) )
1312rmo4 2785 . . . 4  |-  ( E* x  e.  P.  ( A  +P.  x )  =  B  <->  A. x  e.  P.  A. y  e.  P.  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
1410, 13sylibr 132 . . 3  |-  ( A  e.  P.  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
154, 14syl 14 . 2  |-  ( A 
<P  B  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
16 reu5 2566 . 2  |-  ( E! x  e.  P.  ( A  +P.  x )  =  B  <->  ( E. x  e.  P.  ( A  +P.  x )  =  B  /\  E* x  e. 
P.  ( A  +P.  x )  =  B ) )
171, 15, 16sylanbrc 408 1  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   E!wreu 2350   E*wrmo 2351   class class class wbr 3785  (class class class)co 5532   P.cnp 6481    +P. cpp 6483    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  srpospr  6959
  Copyright terms: Public domain W3C validator