ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srpospr Unicode version

Theorem srpospr 6959
Description: Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
Assertion
Ref Expression
srpospr  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem srpospr
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6904 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq2 3789 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( 0R  <R  [ <. a ,  b >. ]  ~R  <->  0R 
<R  A ) )
3 eqeq2 2090 . . . . 5  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
43reubidv 2537 . . . 4  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
52, 4imbi12d 232 . . 3  |-  ( [
<. a ,  b >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. a ,  b >. ]  ~R  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )  <->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  A ) ) )
6 gt0srpr 6925 . . . . . . . 8  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  <->  b  <P  a )
76biimpi 118 . . . . . . 7  |-  ( 0R 
<R  [ <. a ,  b
>. ]  ~R  ->  b  <P  a )
87adantl 271 . . . . . 6  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  b  <P  a
)
9 lteupri 6807 . . . . . 6  |-  ( b 
<P  a  ->  E! x  e.  P.  ( b  +P.  x )  =  a )
108, 9syl 14 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  ( b  +P.  x )  =  a )
11 simpr 108 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  x  e.  P. )
12 1pr 6744 . . . . . . . . . 10  |-  1P  e.  P.
1312a1i 9 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  1P  e.  P. )
14 addclpr 6727 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
1511, 13, 14syl2anc 403 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  e.  P. )
16 simplll 499 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  a  e.  P. )
17 simpllr 500 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  b  e.  P. )
18 enreceq 6913 . . . . . . . 8  |-  ( ( ( ( x  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( a  e.  P.  /\  b  e.  P. )
)  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  <->  ( (
x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a ) ) )
1915, 13, 16, 17, 18syl22anc 1170 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b >. ]  ~R  <->  ( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a
) ) )
20 addcomprg 6768 . . . . . . . . . . . 12  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  =  ( 1P  +P.  x ) )
2111, 13, 20syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  1P )  =  ( 1P  +P.  x ) )
2221oveq1d 5547 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( ( 1P  +P.  x )  +P.  b
) )
23 addassprg 6769 . . . . . . . . . . 11  |-  ( ( 1P  e.  P.  /\  x  e.  P.  /\  b  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2413, 11, 17, 23syl3anc 1169 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  x
)  +P.  b )  =  ( 1P  +P.  ( x  +P.  b ) ) )
2522, 24eqtrd 2113 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  (
x  +P.  b )
) )
2625eqeq1d 2089 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( 1P  +P.  ( x  +P.  b
) )  =  ( 1P  +P.  a ) ) )
27 addclpr 6727 . . . . . . . . . . 11  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  e.  P. )
2811, 17, 27syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  e.  P. )
29 addcanprg 6806 . . . . . . . . . 10  |-  ( ( 1P  e.  P.  /\  ( x  +P.  b )  e.  P.  /\  a  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
3013, 28, 16, 29syl3anc 1169 . . . . . . . . 9  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  -> 
( x  +P.  b
)  =  a ) )
31 oveq2 5540 . . . . . . . . 9  |-  ( ( x  +P.  b )  =  a  ->  ( 1P  +P.  ( x  +P.  b ) )  =  ( 1P  +P.  a
) )
3230, 31impbid1 140 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( 1P  +P.  (
x  +P.  b )
)  =  ( 1P 
+P.  a )  <->  ( x  +P.  b )  =  a ) )
3326, 32bitrd 186 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( ( x  +P.  1P )  +P.  b )  =  ( 1P  +P.  a )  <->  ( x  +P.  b )  =  a ) )
34 addcomprg 6768 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  b  e.  P. )  ->  ( x  +P.  b
)  =  ( b  +P.  x ) )
3511, 17, 34syl2anc 403 . . . . . . . 8  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
x  +P.  b )  =  ( b  +P.  x ) )
3635eqeq1d 2089 . . . . . . 7  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( x  +P.  b
)  =  a  <->  ( b  +P.  x )  =  a ) )
3719, 33, 363bitrrd 213 . . . . . 6  |-  ( ( ( ( a  e. 
P.  /\  b  e.  P. )  /\  0R  <R  [
<. a ,  b >. ]  ~R  )  /\  x  e.  P. )  ->  (
( b  +P.  x
)  =  a  <->  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3837reubidva 2536 . . . . 5  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  ( E! x  e.  P.  ( b  +P.  x )  =  a  <-> 
E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
3910, 38mpbid 145 . . . 4  |-  ( ( ( a  e.  P.  /\  b  e.  P. )  /\  0R  <R  [ <. a ,  b >. ]  ~R  )  ->  E! x  e. 
P.  [ <. (
x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  )
4039ex 113 . . 3  |-  ( ( a  e.  P.  /\  b  e.  P. )  ->  ( 0R  <R  [ <. a ,  b >. ]  ~R  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. a ,  b
>. ]  ~R  ) )
411, 5, 40ecoptocl 6216 . 2  |-  ( A  e.  R.  ->  ( 0R  <R  A  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
4241imp 122 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   E!wreu 2350   <.cop 3401   class class class wbr 3785  (class class class)co 5532   [cec 6127   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    <P cltp 6485    ~R cer 6486   R.cnr 6487   0Rc0r 6488    <R cltr 6493
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-iltp 6660  df-enr 6903  df-nr 6904  df-ltr 6907  df-0r 6908
This theorem is referenced by:  prsrriota  6964  caucvgsrlemcl  6965  caucvgsrlemgt1  6971
  Copyright terms: Public domain W3C validator