ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleletr Unicode version

Theorem ltleletr 7193
Description: Transitive law, weaker form of  ( A  < 
B  /\  B  <_  C )  ->  A  <  C. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
ltleletr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem ltleletr
StepHypRef Expression
1 lttr 7185 . . . . . 6  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
213coml 1145 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  <  A  /\  A  <  B )  ->  C  <  B
) )
32expcomd 1370 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  <  A  ->  C  <  B ) ) )
4 con3 603 . . . 4  |-  ( ( C  <  A  ->  C  <  B )  -> 
( -.  C  < 
B  ->  -.  C  <  A ) )
53, 4syl6 33 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( -.  C  <  B  ->  -.  C  <  A ) ) )
6 lenlt 7187 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
763adant1 956 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
8 lenlt 7187 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
983adant2 957 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
107, 9imbi12d 232 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  <_  C  ->  A  <_  C )  <->  ( -.  C  <  B  ->  -.  C  <  A
) ) )
115, 10sylibrd 167 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( B  <_  C  ->  A  <_  C ) ) )
1211impd 251 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    e. wcel 1433   class class class wbr 3785   RRcr 6980    < clt 7153    <_ cle 7154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159
This theorem is referenced by:  nn0ge2m1nn  8348  lbzbi  8701
  Copyright terms: Public domain W3C validator