| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqadd1 | Unicode version | ||
| Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqadd1.a |
|
| modqadd1.b |
|
| modqadd1.c |
|
| modqadd1.dq |
|
| modqadd1.dgt0 |
|
| modqadd1.ab |
|
| Ref | Expression |
|---|---|
| modqadd1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqadd1.ab |
. 2
| |
| 2 | modqadd1.a |
. . . . . . 7
| |
| 3 | modqadd1.dq |
. . . . . . 7
| |
| 4 | modqadd1.dgt0 |
. . . . . . 7
| |
| 5 | modqval 9326 |
. . . . . . 7
| |
| 6 | 2, 3, 4, 5 | syl3anc 1169 |
. . . . . 6
|
| 7 | modqadd1.b |
. . . . . . 7
| |
| 8 | modqval 9326 |
. . . . . . 7
| |
| 9 | 7, 3, 4, 8 | syl3anc 1169 |
. . . . . 6
|
| 10 | 6, 9 | eqeq12d 2095 |
. . . . 5
|
| 11 | oveq1 5539 |
. . . . 5
| |
| 12 | 10, 11 | syl6bi 161 |
. . . 4
|
| 13 | qcn 8719 |
. . . . . . 7
| |
| 14 | 2, 13 | syl 14 |
. . . . . 6
|
| 15 | modqadd1.c |
. . . . . . 7
| |
| 16 | qcn 8719 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | qcn 8719 |
. . . . . . . 8
| |
| 19 | 3, 18 | syl 14 |
. . . . . . 7
|
| 20 | 4 | gt0ne0d 7613 |
. . . . . . . . . 10
|
| 21 | qdivcl 8728 |
. . . . . . . . . 10
| |
| 22 | 2, 3, 20, 21 | syl3anc 1169 |
. . . . . . . . 9
|
| 23 | 22 | flqcld 9279 |
. . . . . . . 8
|
| 24 | 23 | zcnd 8470 |
. . . . . . 7
|
| 25 | 19, 24 | mulcld 7139 |
. . . . . 6
|
| 26 | 14, 17, 25 | addsubd 7440 |
. . . . 5
|
| 27 | qcn 8719 |
. . . . . . 7
| |
| 28 | 7, 27 | syl 14 |
. . . . . 6
|
| 29 | qdivcl 8728 |
. . . . . . . . . 10
| |
| 30 | 7, 3, 20, 29 | syl3anc 1169 |
. . . . . . . . 9
|
| 31 | 30 | flqcld 9279 |
. . . . . . . 8
|
| 32 | 31 | zcnd 8470 |
. . . . . . 7
|
| 33 | 19, 32 | mulcld 7139 |
. . . . . 6
|
| 34 | 28, 17, 33 | addsubd 7440 |
. . . . 5
|
| 35 | 26, 34 | eqeq12d 2095 |
. . . 4
|
| 36 | 12, 35 | sylibrd 167 |
. . 3
|
| 37 | oveq1 5539 |
. . . 4
| |
| 38 | qaddcl 8720 |
. . . . . . 7
| |
| 39 | 2, 15, 38 | syl2anc 403 |
. . . . . 6
|
| 40 | modqcyc2 9362 |
. . . . . 6
| |
| 41 | 39, 23, 3, 4, 40 | syl22anc 1170 |
. . . . 5
|
| 42 | qaddcl 8720 |
. . . . . . 7
| |
| 43 | 7, 15, 42 | syl2anc 403 |
. . . . . 6
|
| 44 | modqcyc2 9362 |
. . . . . 6
| |
| 45 | 43, 31, 3, 4, 44 | syl22anc 1170 |
. . . . 5
|
| 46 | 41, 45 | eqeq12d 2095 |
. . . 4
|
| 47 | 37, 46 | syl5ib 152 |
. . 3
|
| 48 | 36, 47 | syld 44 |
. 2
|
| 49 | 1, 48 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-n0 8289 df-z 8352 df-q 8705 df-rp 8735 df-fl 9274 df-mod 9325 |
| This theorem is referenced by: modqaddabs 9364 modqaddmod 9365 modqadd12d 9382 modqaddmulmod 9393 moddvds 10204 |
| Copyright terms: Public domain | W3C validator |