ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 Unicode version

Theorem modqadd1 9363
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a  |-  ( ph  ->  A  e.  QQ )
modqadd1.b  |-  ( ph  ->  B  e.  QQ )
modqadd1.c  |-  ( ph  ->  C  e.  QQ )
modqadd1.dq  |-  ( ph  ->  D  e.  QQ )
modqadd1.dgt0  |-  ( ph  ->  0  <  D )
modqadd1.ab  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqadd1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
2 modqadd1.a . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
3 modqadd1.dq . . . . . . 7  |-  ( ph  ->  D  e.  QQ )
4 modqadd1.dgt0 . . . . . . 7  |-  ( ph  ->  0  <  D )
5 modqval 9326 . . . . . . 7  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( A  mod  D )  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) ) )
62, 3, 4, 5syl3anc 1169 . . . . . 6  |-  ( ph  ->  ( A  mod  D
)  =  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) ) )
7 modqadd1.b . . . . . . 7  |-  ( ph  ->  B  e.  QQ )
8 modqval 9326 . . . . . . 7  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( B  mod  D )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) )
97, 3, 4, 8syl3anc 1169 . . . . . 6  |-  ( ph  ->  ( B  mod  D
)  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) )
106, 9eqeq12d 2095 . . . . 5  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  <->  ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) ) ) )
11 oveq1 5539 . . . . 5  |-  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) )
1210, 11syl6bi 161 . . . 4  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) ) )
13 qcn 8719 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  A  e.  CC )
15 modqadd1.c . . . . . . 7  |-  ( ph  ->  C  e.  QQ )
16 qcn 8719 . . . . . . 7  |-  ( C  e.  QQ  ->  C  e.  CC )
1715, 16syl 14 . . . . . 6  |-  ( ph  ->  C  e.  CC )
18 qcn 8719 . . . . . . . 8  |-  ( D  e.  QQ  ->  D  e.  CC )
193, 18syl 14 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
204gt0ne0d 7613 . . . . . . . . . 10  |-  ( ph  ->  D  =/=  0 )
21 qdivcl 8728 . . . . . . . . . 10  |-  ( ( A  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( A  /  D )  e.  QQ )
222, 3, 20, 21syl3anc 1169 . . . . . . . . 9  |-  ( ph  ->  ( A  /  D
)  e.  QQ )
2322flqcld 9279 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  ZZ )
2423zcnd 8470 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( A  /  D ) )  e.  CC )
2519, 24mulcld 7139 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( A  /  D ) ) )  e.  CC )
2614, 17, 25addsubd 7440 . . . . 5  |-  ( ph  ->  ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
) )
27 qcn 8719 . . . . . . 7  |-  ( B  e.  QQ  ->  B  e.  CC )
287, 27syl 14 . . . . . 6  |-  ( ph  ->  B  e.  CC )
29 qdivcl 8728 . . . . . . . . . 10  |-  ( ( B  e.  QQ  /\  D  e.  QQ  /\  D  =/=  0 )  ->  ( B  /  D )  e.  QQ )
307, 3, 20, 29syl3anc 1169 . . . . . . . . 9  |-  ( ph  ->  ( B  /  D
)  e.  QQ )
3130flqcld 9279 . . . . . . . 8  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  ZZ )
3231zcnd 8470 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( B  /  D ) )  e.  CC )
3319, 32mulcld 7139 . . . . . 6  |-  ( ph  ->  ( D  x.  ( |_ `  ( B  /  D ) ) )  e.  CC )
3428, 17, 33addsubd 7440 . . . . 5  |-  ( ph  ->  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  +  C
) )
3526, 34eqeq12d 2095 . . . 4  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  <->  ( ( A  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  +  C
)  =  ( ( B  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  +  C ) ) )
3612, 35sylibrd 167 . . 3  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) ) ) )
37 oveq1 5539 . . . 4  |-  ( ( ( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D ) )
38 qaddcl 8720 . . . . . . 7  |-  ( ( A  e.  QQ  /\  C  e.  QQ )  ->  ( A  +  C
)  e.  QQ )
392, 15, 38syl2anc 403 . . . . . 6  |-  ( ph  ->  ( A  +  C
)  e.  QQ )
40 modqcyc2 9362 . . . . . 6  |-  ( ( ( ( A  +  C )  e.  QQ  /\  ( |_ `  ( A  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( A  +  C
)  -  ( D  x.  ( |_ `  ( A  /  D
) ) ) )  mod  D )  =  ( ( A  +  C )  mod  D
) )
4139, 23, 3, 4, 40syl22anc 1170 . . . . 5  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D )  =  ( ( A  +  C )  mod 
D ) )
42 qaddcl 8720 . . . . . . 7  |-  ( ( B  e.  QQ  /\  C  e.  QQ )  ->  ( B  +  C
)  e.  QQ )
437, 15, 42syl2anc 403 . . . . . 6  |-  ( ph  ->  ( B  +  C
)  e.  QQ )
44 modqcyc2 9362 . . . . . 6  |-  ( ( ( ( B  +  C )  e.  QQ  /\  ( |_ `  ( B  /  D ) )  e.  ZZ )  /\  ( D  e.  QQ  /\  0  <  D ) )  ->  ( (
( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  =  ( ( B  +  C )  mod  D
) )
4543, 31, 3, 4, 44syl22anc 1170 . . . . 5  |-  ( ph  ->  ( ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  mod  D )  =  ( ( B  +  C )  mod 
D ) )
4641, 45eqeq12d 2095 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  mod  D
)  =  ( ( ( B  +  C
)  -  ( D  x.  ( |_ `  ( B  /  D
) ) ) )  mod  D )  <->  ( ( A  +  C )  mod  D )  =  ( ( B  +  C
)  mod  D )
) )
4737, 46syl5ib 152 . . 3  |-  ( ph  ->  ( ( ( A  +  C )  -  ( D  x.  ( |_ `  ( A  /  D ) ) ) )  =  ( ( B  +  C )  -  ( D  x.  ( |_ `  ( B  /  D ) ) ) )  ->  (
( A  +  C
)  mod  D )  =  ( ( B  +  C )  mod 
D ) ) )
4836, 47syld 44 . 2  |-  ( ph  ->  ( ( A  mod  D )  =  ( B  mod  D )  -> 
( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) ) )
491, 48mpd 13 1  |-  ( ph  ->  ( ( A  +  C )  mod  D
)  =  ( ( B  +  C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433    =/= wne 2245   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   0cc0 6981    + caddc 6984    x. cmul 6986    < clt 7153    - cmin 7279    / cdiv 7760   ZZcz 8351   QQcq 8704   |_cfl 9272    mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325
This theorem is referenced by:  modqaddabs  9364  modqaddmod  9365  modqadd12d  9382  modqaddmulmod  9393  moddvds  10204
  Copyright terms: Public domain W3C validator