ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd1 GIF version

Theorem modqadd1 9363
Description: Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
Hypotheses
Ref Expression
modqadd1.a (𝜑𝐴 ∈ ℚ)
modqadd1.b (𝜑𝐵 ∈ ℚ)
modqadd1.c (𝜑𝐶 ∈ ℚ)
modqadd1.dq (𝜑𝐷 ∈ ℚ)
modqadd1.dgt0 (𝜑 → 0 < 𝐷)
modqadd1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqadd1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))

Proof of Theorem modqadd1
StepHypRef Expression
1 modqadd1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqadd1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqadd1.dq . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqadd1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 9326 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1169 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqadd1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 9326 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1169 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2095 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5539 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
1210, 11syl6bi 161 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
13 qcn 8719 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
142, 13syl 14 . . . . . 6 (𝜑𝐴 ∈ ℂ)
15 modqadd1.c . . . . . . 7 (𝜑𝐶 ∈ ℚ)
16 qcn 8719 . . . . . . 7 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
1715, 16syl 14 . . . . . 6 (𝜑𝐶 ∈ ℂ)
18 qcn 8719 . . . . . . . 8 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
193, 18syl 14 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
204gt0ne0d 7613 . . . . . . . . . 10 (𝜑𝐷 ≠ 0)
21 qdivcl 8728 . . . . . . . . . 10 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
222, 3, 20, 21syl3anc 1169 . . . . . . . . 9 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2322flqcld 9279 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2423zcnd 8470 . . . . . . 7 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2519, 24mulcld 7139 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2614, 17, 25addsubd 7440 . . . . 5 (𝜑 → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶))
27 qcn 8719 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
287, 27syl 14 . . . . . 6 (𝜑𝐵 ∈ ℂ)
29 qdivcl 8728 . . . . . . . . . 10 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
307, 3, 20, 29syl3anc 1169 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3130flqcld 9279 . . . . . . . 8 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 8470 . . . . . . 7 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3319, 32mulcld 7139 . . . . . 6 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
3428, 17, 33addsubd 7440 . . . . 5 (𝜑 → ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶))
3526, 34eqeq12d 2095 . . . 4 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) + 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) + 𝐶)))
3612, 35sylibrd 167 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
37 oveq1 5539 . . . 4 (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷))
38 qaddcl 8720 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 + 𝐶) ∈ ℚ)
392, 15, 38syl2anc 403 . . . . . 6 (𝜑 → (𝐴 + 𝐶) ∈ ℚ)
40 modqcyc2 9362 . . . . . 6 ((((𝐴 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐴 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
4139, 23, 3, 4, 40syl22anc 1170 . . . . 5 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = ((𝐴 + 𝐶) mod 𝐷))
42 qaddcl 8720 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 + 𝐶) ∈ ℚ)
437, 15, 42syl2anc 403 . . . . . 6 (𝜑 → (𝐵 + 𝐶) ∈ ℚ)
44 modqcyc2 9362 . . . . . 6 ((((𝐵 + 𝐶) ∈ ℚ ∧ (⌊‘(𝐵 / 𝐷)) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4543, 31, 3, 4, 44syl22anc 1170 . . . . 5 (𝜑 → (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
4641, 45eqeq12d 2095 . . . 4 (𝜑 → ((((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) mod 𝐷) = (((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) mod 𝐷) ↔ ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4737, 46syl5ib 152 . . 3 (𝜑 → (((𝐴 + 𝐶) − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = ((𝐵 + 𝐶) − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
4836, 47syld 44 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷)))
491, 48mpd 13 1 (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wne 2245   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981   + caddc 6984   · cmul 6986   < clt 7153  cmin 7279   / cdiv 7760  cz 8351  cq 8704  cfl 9272   mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325
This theorem is referenced by:  modqaddabs  9364  modqaddmod  9365  modqadd12d  9382  modqaddmulmod  9393  moddvds  10204
  Copyright terms: Public domain W3C validator