ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omexg Unicode version

Theorem omexg 6054
Description: Ordinal multiplication is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
omexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )

Proof of Theorem omexg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2604 . . . 4  |-  y  e. 
_V
2 0ex 3905 . . . . 5  |-  (/)  e.  _V
3 vex 2604 . . . . . 6  |-  x  e. 
_V
4 omfnex 6052 . . . . . 6  |-  ( x  e.  _V  ->  (
z  e.  _V  |->  ( z  +o  x ) )  Fn  _V )
53, 4ax-mp 7 . . . . 5  |-  ( z  e.  _V  |->  ( z  +o  x ) )  Fn  _V
62, 5rdgexg 5999 . . . 4  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V )
71, 6ax-mp 7 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V
87gen2 1379 . 2  |-  A. x A. y ( rec (
( z  e.  _V  |->  ( z  +o  x
) ) ,  (/) ) `  y )  e.  _V
9 df-omul 6029 . . 3  |-  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
109mpt2fvex 5849 . 2  |-  ( ( A. x A. y
( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y )  e.  _V  /\  A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
118, 10mp3an1 1255 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  .o  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    e. wcel 1433   _Vcvv 2601   (/)c0 3251    |-> cmpt 3839   Oncon0 4118    Fn wfn 4917   ` cfv 4922  (class class class)co 5532   reccrdg 5979    +o coa 6021    .o comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  fnoei  6055  oeiexg  6056  oeiv  6059  oeicl  6065  omv2  6068
  Copyright terms: Public domain W3C validator