ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r Unicode version

Theorem mulap0r 7715
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 940 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  0 )
2 simp2 939 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B  e.  CC )
32mul02d 7496 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
0  x.  B )  =  0 )
41, 3breqtrrd 3811 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( 0  x.  B
) )
5 simp1 938 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A  e.  CC )
6 0cnd 7112 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  0  e.  CC )
7 mulext 7714 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( 0  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  B ) #  ( 0  x.  B )  -> 
( A #  0  \/  B #  B ) ) )
85, 2, 6, 2, 7syl22anc 1170 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( 0  x.  B )  ->  ( A #  0  \/  B #  B ) ) )
94, 8mpd 13 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  \/  B #  B ) )
109orcomd 680 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  B  \/  A #  0 ) )
11 apirr 7705 . . . 4  |-  ( B  e.  CC  ->  -.  B #  B )
12 biorf 695 . . . 4  |-  ( -.  B #  B  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
132, 11, 123syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
1410, 13mpbird 165 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A #  0 )
155mul01d 7497 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  0 )  =  0 )
161, 15breqtrrd 3811 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( A  x.  0
) )
17 mulext 7714 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  e.  CC  /\  0  e.  CC ) )  -> 
( ( A  x.  B ) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
185, 2, 5, 6, 17syl22anc 1170 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
1916, 18mpd 13 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  A  \/  B #  0 ) )
20 apirr 7705 . . . 4  |-  ( A  e.  CC  ->  -.  A #  A )
21 biorf 695 . . . 4  |-  ( -.  A #  A  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
225, 20, 213syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
2319, 22mpbird 165 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B #  0 )
2414, 23jca 300 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981    x. cmul 6986   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  msqge0  7716  mulge0  7719  mulap0b  7745
  Copyright terms: Public domain W3C validator