| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullocprlem | Unicode version | ||
| Description: Calculations for mullocpr 6761. (Contributed by Jim Kingdon, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| mullocprlem.ab |
|
| mullocprlem.uqedu |
|
| mullocprlem.edutdu |
|
| mullocprlem.tdudr |
|
| mullocprlem.qr |
|
| mullocprlem.duq |
|
| mullocprlem.du |
|
| mullocprlem.et |
|
| Ref | Expression |
|---|---|
| mullocprlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullocprlem.uqedu |
. . . . . . 7
| |
| 2 | mullocprlem.et |
. . . . . . . . 9
| |
| 3 | 2 | simpld 110 |
. . . . . . . 8
|
| 4 | mullocprlem.duq |
. . . . . . . . 9
| |
| 5 | 4 | simpld 110 |
. . . . . . . 8
|
| 6 | 4 | simprd 112 |
. . . . . . . 8
|
| 7 | mulcomnqg 6573 |
. . . . . . . . 9
| |
| 8 | 7 | adantl 271 |
. . . . . . . 8
|
| 9 | mulassnqg 6574 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 271 |
. . . . . . . 8
|
| 11 | 3, 5, 6, 8, 10 | caov13d 5704 |
. . . . . . 7
|
| 12 | 1, 11 | breqtrd 3809 |
. . . . . 6
|
| 13 | mullocprlem.qr |
. . . . . . . 8
| |
| 14 | 13 | simpld 110 |
. . . . . . 7
|
| 15 | mulclnq 6566 |
. . . . . . . 8
| |
| 16 | 5, 3, 15 | syl2anc 403 |
. . . . . . 7
|
| 17 | ltmnqg 6591 |
. . . . . . 7
| |
| 18 | 14, 16, 6, 17 | syl3anc 1169 |
. . . . . 6
|
| 19 | 12, 18 | mpbird 165 |
. . . . 5
|
| 20 | 19 | adantr 270 |
. . . 4
|
| 21 | mullocprlem.ab |
. . . . . . . 8
| |
| 22 | 21 | simpld 110 |
. . . . . . 7
|
| 23 | mullocprlem.du |
. . . . . . . 8
| |
| 24 | 23 | simpld 110 |
. . . . . . 7
|
| 25 | 22, 24 | jca 300 |
. . . . . 6
|
| 26 | 25 | adantr 270 |
. . . . 5
|
| 27 | 21 | simprd 112 |
. . . . . 6
|
| 28 | 27 | anim1i 333 |
. . . . 5
|
| 29 | 14 | adantr 270 |
. . . . 5
|
| 30 | mulnqprl 6758 |
. . . . 5
| |
| 31 | 26, 28, 29, 30 | syl21anc 1168 |
. . . 4
|
| 32 | 20, 31 | mpd 13 |
. . 3
|
| 33 | 32 | orcd 684 |
. 2
|
| 34 | 2 | simprd 112 |
. . . . . . 7
|
| 35 | mulcomnqg 6573 |
. . . . . . 7
| |
| 36 | 34, 6, 35 | syl2anc 403 |
. . . . . 6
|
| 37 | mullocprlem.tdudr |
. . . . . . 7
| |
| 38 | mulclnq 6566 |
. . . . . . . . . 10
| |
| 39 | 34, 6, 38 | syl2anc 403 |
. . . . . . . . 9
|
| 40 | 13 | simprd 112 |
. . . . . . . . 9
|
| 41 | ltmnqg 6591 |
. . . . . . . . 9
| |
| 42 | 39, 40, 5, 41 | syl3anc 1169 |
. . . . . . . 8
|
| 43 | 34, 5, 6, 8, 10 | caov12d 5702 |
. . . . . . . . 9
|
| 44 | 43 | breq1d 3795 |
. . . . . . . 8
|
| 45 | 42, 44 | bitr4d 189 |
. . . . . . 7
|
| 46 | 37, 45 | mpbird 165 |
. . . . . 6
|
| 47 | 36, 46 | eqbrtrrd 3807 |
. . . . 5
|
| 48 | 47 | adantr 270 |
. . . 4
|
| 49 | 23 | simprd 112 |
. . . . . . 7
|
| 50 | 22, 49 | jca 300 |
. . . . . 6
|
| 51 | 50 | adantr 270 |
. . . . 5
|
| 52 | 27 | anim1i 333 |
. . . . 5
|
| 53 | 40 | adantr 270 |
. . . . 5
|
| 54 | mulnqpru 6759 |
. . . . 5
| |
| 55 | 51, 52, 53, 54 | syl21anc 1168 |
. . . 4
|
| 56 | 48, 55 | mpd 13 |
. . 3
|
| 57 | 56 | olcd 685 |
. 2
|
| 58 | mullocprlem.edutdu |
. . . 4
| |
| 59 | mulclnq 6566 |
. . . . . . 7
| |
| 60 | 4, 59 | syl 14 |
. . . . . 6
|
| 61 | ltmnqg 6591 |
. . . . . 6
| |
| 62 | 3, 34, 60, 61 | syl3anc 1169 |
. . . . 5
|
| 63 | mulcomnqg 6573 |
. . . . . . 7
| |
| 64 | 60, 3, 63 | syl2anc 403 |
. . . . . 6
|
| 65 | mulcomnqg 6573 |
. . . . . . 7
| |
| 66 | 60, 34, 65 | syl2anc 403 |
. . . . . 6
|
| 67 | 64, 66 | breq12d 3798 |
. . . . 5
|
| 68 | 62, 67 | bitrd 186 |
. . . 4
|
| 69 | 58, 68 | mpbird 165 |
. . 3
|
| 70 | prop 6665 |
. . . 4
| |
| 71 | prloc 6681 |
. . . 4
| |
| 72 | 70, 71 | sylan 277 |
. . 3
|
| 73 | 27, 69, 72 | syl2anc 403 |
. 2
|
| 74 | 33, 57, 73 | mpjaodan 744 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-lti 6497 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-inp 6656 df-imp 6659 |
| This theorem is referenced by: mullocpr 6761 |
| Copyright terms: Public domain | W3C validator |