ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0or Unicode version

Theorem fin0or 6370
Description: A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
fin0or  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Distinct variable group:    x, A

Proof of Theorem fin0or
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6264 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 118 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 nn0suc 4345 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
43ad2antrl 473 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
5 simplrr 502 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n )
6 simpr 108 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  =  (/) )
75, 6breqtrd 3809 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6298 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 120 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
109ex 113 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  ->  A  =  (/) ) )
11 simplrr 502 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  A  ~~  n )
1211adantr 270 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  A  ~~  n )
1312ensymd 6286 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  n  ~~  A )
14 bren 6251 . . . . . . . 8  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
1513, 14sylib 120 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. f 
f : n -1-1-onto-> A )
16 f1of 5146 . . . . . . . . . 10  |-  ( f : n -1-1-onto-> A  ->  f :
n --> A )
1716adantl 271 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  f : n --> A )
18 sucidg 4171 . . . . . . . . . . 11  |-  ( m  e.  om  ->  m  e.  suc  m )
1918ad3antlr 476 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  suc  m )
20 simplr 496 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  n  =  suc  m )
2119, 20eleqtrrd 2158 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  n )
2217, 21ffvelrnd 5324 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  (
f `  m )  e.  A )
23 elex2 2615 . . . . . . . 8  |-  ( ( f `  m )  e.  A  ->  E. x  x  e.  A )
2422, 23syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  E. x  x  e.  A )
2515, 24exlimddv 1819 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. x  x  e.  A )
2625ex 113 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  (
n  =  suc  m  ->  E. x  x  e.  A ) )
2726rexlimdva 2477 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( E. m  e.  om  n  =  suc  m  ->  E. x  x  e.  A )
)
2810, 27orim12d 732 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m )  -> 
( A  =  (/)  \/ 
E. x  x  e.  A ) ) )
294, 28mpd 13 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  =  (/)  \/  E. x  x  e.  A )
)
302, 29rexlimddv 2481 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 661    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   (/)c0 3251   class class class wbr 3785   suc csuc 4120   omcom 4331   -->wf 4918   -1-1-onto->wf1o 4921   ` cfv 4922    ~~ cen 6242   Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator