ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn Unicode version

Theorem 0elnn 4358
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )

Proof of Theorem 0elnn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . 3  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2 eleq2 2142 . . 3  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
31, 2orbi12d 739 . 2  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  (/)  e.  x
)  <->  ( (/)  =  (/)  \/  (/)  e.  (/) ) ) )
4 eqeq1 2087 . . 3  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
5 eleq2 2142 . . 3  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
64, 5orbi12d 739 . 2  |-  ( x  =  y  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( y  =  (/)  \/  (/)  e.  y ) ) )
7 eqeq1 2087 . . 3  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
8 eleq2 2142 . . 3  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
97, 8orbi12d 739 . 2  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  (/)  e.  x )  <-> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
10 eqeq1 2087 . . 3  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
11 eleq2 2142 . . 3  |-  ( x  =  A  ->  ( (/) 
e.  x  <->  (/)  e.  A
) )
1210, 11orbi12d 739 . 2  |-  ( x  =  A  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( A  =  (/)  \/  (/)  e.  A
) ) )
13 eqid 2081 . . 3  |-  (/)  =  (/)
1413orci 682 . 2  |-  ( (/)  =  (/)  \/  (/)  e.  (/) )
15 0ex 3905 . . . . . . 7  |-  (/)  e.  _V
1615sucid 4172 . . . . . 6  |-  (/)  e.  suc  (/)
17 suceq 4157 . . . . . 6  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
1816, 17syl5eleqr 2168 . . . . 5  |-  ( y  =  (/)  ->  (/)  e.  suc  y )
1918a1i 9 . . . 4  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (/)  e.  suc  y ) )
20 sssucid 4170 . . . . . 6  |-  y  C_  suc  y
2120a1i 9 . . . . 5  |-  ( y  e.  om  ->  y  C_ 
suc  y )
2221sseld 2998 . . . 4  |-  ( y  e.  om  ->  ( (/) 
e.  y  ->  (/)  e.  suc  y ) )
2319, 22jaod 669 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  ->  (/) 
e.  suc  y )
)
24 olc 664 . . 3  |-  ( (/)  e.  suc  y  ->  ( suc  y  =  (/)  \/  (/)  e.  suc  y ) )
2523, 24syl6 33 . 2  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  -> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
263, 6, 9, 12, 14, 25finds 4341 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 661    = wceq 1284    e. wcel 1433    C_ wss 2973   (/)c0 3251   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332
This theorem is referenced by:  nn0eln0  4359  nnsucsssuc  6094  nntri3or  6095  nnm00  6125  ssfilem  6360  diffitest  6371  elni2  6504  enq0tr  6624
  Copyright terms: Public domain W3C validator