| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmsucr | Unicode version | ||
| Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmsucr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5540 |
. . . . 5
| |
| 2 | oveq2 5540 |
. . . . . 6
| |
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3 | oveq12d 5550 |
. . . . 5
|
| 5 | 1, 4 | eqeq12d 2095 |
. . . 4
|
| 6 | 5 | imbi2d 228 |
. . 3
|
| 7 | oveq2 5540 |
. . . . 5
| |
| 8 | oveq2 5540 |
. . . . . 6
| |
| 9 | id 19 |
. . . . . 6
| |
| 10 | 8, 9 | oveq12d 5550 |
. . . . 5
|
| 11 | 7, 10 | eqeq12d 2095 |
. . . 4
|
| 12 | oveq2 5540 |
. . . . 5
| |
| 13 | oveq2 5540 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | oveq12d 5550 |
. . . . 5
|
| 16 | 12, 15 | eqeq12d 2095 |
. . . 4
|
| 17 | oveq2 5540 |
. . . . 5
| |
| 18 | oveq2 5540 |
. . . . . 6
| |
| 19 | id 19 |
. . . . . 6
| |
| 20 | 18, 19 | oveq12d 5550 |
. . . . 5
|
| 21 | 17, 20 | eqeq12d 2095 |
. . . 4
|
| 22 | peano2 4336 |
. . . . . . 7
| |
| 23 | nnm0 6077 |
. . . . . . 7
| |
| 24 | 22, 23 | syl 14 |
. . . . . 6
|
| 25 | nnm0 6077 |
. . . . . 6
| |
| 26 | 24, 25 | eqtr4d 2116 |
. . . . 5
|
| 27 | peano1 4335 |
. . . . . . 7
| |
| 28 | nnmcl 6083 |
. . . . . . 7
| |
| 29 | 27, 28 | mpan2 415 |
. . . . . 6
|
| 30 | nna0 6076 |
. . . . . 6
| |
| 31 | 29, 30 | syl 14 |
. . . . 5
|
| 32 | 26, 31 | eqtr4d 2116 |
. . . 4
|
| 33 | oveq1 5539 |
. . . . . 6
| |
| 34 | peano2b 4355 |
. . . . . . . 8
| |
| 35 | nnmsuc 6079 |
. . . . . . . 8
| |
| 36 | 34, 35 | sylanb 278 |
. . . . . . 7
|
| 37 | nnmcl 6083 |
. . . . . . . . . . 11
| |
| 38 | peano2b 4355 |
. . . . . . . . . . . 12
| |
| 39 | nnaass 6087 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | syl3an3b 1207 |
. . . . . . . . . . 11
|
| 41 | 37, 40 | syl3an1 1202 |
. . . . . . . . . 10
|
| 42 | 41 | 3expb 1139 |
. . . . . . . . 9
|
| 43 | 42 | anidms 389 |
. . . . . . . 8
|
| 44 | nnmsuc 6079 |
. . . . . . . . 9
| |
| 45 | 44 | oveq1d 5547 |
. . . . . . . 8
|
| 46 | nnaass 6087 |
. . . . . . . . . . . . . 14
| |
| 47 | 34, 46 | syl3an3b 1207 |
. . . . . . . . . . . . 13
|
| 48 | 37, 47 | syl3an1 1202 |
. . . . . . . . . . . 12
|
| 49 | 48 | 3expb 1139 |
. . . . . . . . . . 11
|
| 50 | 49 | an42s 553 |
. . . . . . . . . 10
|
| 51 | 50 | anidms 389 |
. . . . . . . . 9
|
| 52 | nnacom 6086 |
. . . . . . . . . . . 12
| |
| 53 | suceq 4157 |
. . . . . . . . . . . 12
| |
| 54 | 52, 53 | syl 14 |
. . . . . . . . . . 11
|
| 55 | nnasuc 6078 |
. . . . . . . . . . 11
| |
| 56 | nnasuc 6078 |
. . . . . . . . . . . 12
| |
| 57 | 56 | ancoms 264 |
. . . . . . . . . . 11
|
| 58 | 54, 55, 57 | 3eqtr4d 2123 |
. . . . . . . . . 10
|
| 59 | 58 | oveq2d 5548 |
. . . . . . . . 9
|
| 60 | 51, 59 | eqtr4d 2116 |
. . . . . . . 8
|
| 61 | 43, 45, 60 | 3eqtr4d 2123 |
. . . . . . 7
|
| 62 | 36, 61 | eqeq12d 2095 |
. . . . . 6
|
| 63 | 33, 62 | syl5ibr 154 |
. . . . 5
|
| 64 | 63 | expcom 114 |
. . . 4
|
| 65 | 11, 16, 21, 32, 64 | finds2 4342 |
. . 3
|
| 66 | 6, 65 | vtoclga 2664 |
. 2
|
| 67 | 66 | impcom 123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 |
| This theorem is referenced by: nnmcom 6091 |
| Copyright terms: Public domain | W3C validator |