ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr Unicode version

Theorem nnmsucr 6090
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )

Proof of Theorem nnmsucr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . 5  |-  ( x  =  B  ->  ( suc  A  .o  x )  =  ( suc  A  .o  B ) )
2 oveq2 5540 . . . . . 6  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
3 id 19 . . . . . 6  |-  ( x  =  B  ->  x  =  B )
42, 3oveq12d 5550 . . . . 5  |-  ( x  =  B  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  B )  +o  B ) )
51, 4eqeq12d 2095 . . . 4  |-  ( x  =  B  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) )
65imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x ) )  <->  ( A  e. 
om  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) ) ) )
7 oveq2 5540 . . . . 5  |-  ( x  =  (/)  ->  ( suc 
A  .o  x )  =  ( suc  A  .o  (/) ) )
8 oveq2 5540 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
9 id 19 . . . . . 6  |-  ( x  =  (/)  ->  x  =  (/) )
108, 9oveq12d 5550 . . . . 5  |-  ( x  =  (/)  ->  ( ( A  .o  x )  +o  x )  =  ( ( A  .o  (/) )  +o  (/) ) )
117, 10eqeq12d 2095 . . . 4  |-  ( x  =  (/)  ->  ( ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x )  <->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) ) )
12 oveq2 5540 . . . . 5  |-  ( x  =  y  ->  ( suc  A  .o  x )  =  ( suc  A  .o  y ) )
13 oveq2 5540 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
14 id 19 . . . . . 6  |-  ( x  =  y  ->  x  =  y )
1513, 14oveq12d 5550 . . . . 5  |-  ( x  =  y  ->  (
( A  .o  x
)  +o  x )  =  ( ( A  .o  y )  +o  y ) )
1612, 15eqeq12d 2095 . . . 4  |-  ( x  =  y  ->  (
( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y ) ) )
17 oveq2 5540 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  A  .o  x )  =  ( suc  A  .o  suc  y ) )
18 oveq2 5540 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
19 id 19 . . . . . 6  |-  ( x  =  suc  y  ->  x  =  suc  y )
2018, 19oveq12d 5550 . . . . 5  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  +o  x
)  =  ( ( A  .o  suc  y
)  +o  suc  y
) )
2117, 20eqeq12d 2095 . . . 4  |-  ( x  =  suc  y  -> 
( ( suc  A  .o  x )  =  ( ( A  .o  x
)  +o  x )  <-> 
( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
22 peano2 4336 . . . . . . 7  |-  ( A  e.  om  ->  suc  A  e.  om )
23 nnm0 6077 . . . . . . 7  |-  ( suc 
A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
2422, 23syl 14 . . . . . 6  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  (/) )
25 nnm0 6077 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
2624, 25eqtr4d 2116 . . . . 5  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( A  .o  (/) ) )
27 peano1 4335 . . . . . . 7  |-  (/)  e.  om
28 nnmcl 6083 . . . . . . 7  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  (/) )  e.  om )
2927, 28mpan2 415 . . . . . 6  |-  ( A  e.  om  ->  ( A  .o  (/) )  e.  om )
30 nna0 6076 . . . . . 6  |-  ( ( A  .o  (/) )  e. 
om  ->  ( ( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3129, 30syl 14 . . . . 5  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  (/) )  =  ( A  .o  (/) ) )
3226, 31eqtr4d 2116 . . . 4  |-  ( A  e.  om  ->  ( suc  A  .o  (/) )  =  ( ( A  .o  (/) )  +o  (/) ) )
33 oveq1 5539 . . . . . 6  |-  ( ( suc  A  .o  y
)  =  ( ( A  .o  y )  +o  y )  -> 
( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y
)  +o  y )  +o  suc  A ) )
34 peano2b 4355 . . . . . . . 8  |-  ( A  e.  om  <->  suc  A  e. 
om )
35 nnmsuc 6079 . . . . . . . 8  |-  ( ( suc  A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
3634, 35sylanb 278 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( suc  A  .o  suc  y )  =  ( ( suc  A  .o  y )  +o  suc  A ) )
37 nnmcl 6083 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  y
)  e.  om )
38 peano2b 4355 . . . . . . . . . . . 12  |-  ( y  e.  om  <->  suc  y  e. 
om )
39 nnaass 6087 . . . . . . . . . . . 12  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  suc  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
4038, 39syl3an3b 1207 . . . . . . . . . . 11  |-  ( ( ( A  .o  y
)  e.  om  /\  A  e.  om  /\  y  e.  om )  ->  (
( ( A  .o  y )  +o  A
)  +o  suc  y
)  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4137, 40syl3an1 1202 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
42413expb 1139 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  A )  +o  suc  y )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
4342anidms 389 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  A )  +o  suc  y )  =  ( ( A  .o  y
)  +o  ( A  +o  suc  y ) ) )
44 nnmsuc 6079 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
4544oveq1d 5547 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  A
)  +o  suc  y
) )
46 nnaass 6087 . . . . . . . . . . . . . 14  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  suc  A  e.  om )  -> 
( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4734, 46syl3an3b 1207 . . . . . . . . . . . . 13  |-  ( ( ( A  .o  y
)  e.  om  /\  y  e.  om  /\  A  e.  om )  ->  (
( ( A  .o  y )  +o  y
)  +o  suc  A
)  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
4837, 47syl3an1 1202 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  y  e.  om  /\  A  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
49483expb 1139 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( y  e.  om  /\  A  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5049an42s 553 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  y  e.  om )  /\  ( A  e.  om  /\  y  e.  om )
)  ->  ( (
( A  .o  y
)  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o  suc  A ) ) )
5150anidms 389 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
52 nnacom 6086 . . . . . . . . . . . 12  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  y
)  =  ( y  +o  A ) )
53 suceq 4157 . . . . . . . . . . . 12  |-  ( ( A  +o  y )  =  ( y  +o  A )  ->  suc  ( A  +o  y
)  =  suc  (
y  +o  A ) )
5452, 53syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  suc  ( A  +o  y )  =  suc  ( y  +o  A
) )
55 nnasuc 6078 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
56 nnasuc 6078 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  A  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5756ancoms 264 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( y  +o  suc  A )  =  suc  (
y  +o  A ) )
5854, 55, 573eqtr4d 2123 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  ( y  +o  suc  A
) )
5958oveq2d 5548 . . . . . . . . 9  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  y )  +o  ( A  +o  suc  y ) )  =  ( ( A  .o  y )  +o  ( y  +o 
suc  A ) ) )
6051, 59eqtr4d 2116 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  .o  y )  +o  y )  +o  suc  A )  =  ( ( A  .o  y )  +o  ( A  +o  suc  y ) ) )
6143, 45, 603eqtr4d 2123 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  .o  suc  y )  +o  suc  y )  =  ( ( ( A  .o  y )  +o  y
)  +o  suc  A
) )
6236, 61eqeq12d 2095 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y )  <->  ( ( suc  A  .o  y )  +o  suc  A )  =  ( ( ( A  .o  y )  +o  y )  +o 
suc  A ) ) )
6333, 62syl5ibr 154 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) )
6463expcom 114 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( suc  A  .o  y )  =  ( ( A  .o  y
)  +o  y )  ->  ( suc  A  .o  suc  y )  =  ( ( A  .o  suc  y )  +o  suc  y ) ) ) )
6511, 16, 21, 32, 64finds2 4342 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  x
)  =  ( ( A  .o  x )  +o  x ) ) )
666, 65vtoclga 2664 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( suc  A  .o  B
)  =  ( ( A  .o  B )  +o  B ) ) )
6766impcom 123 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B
)  +o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   (/)c0 3251   suc csuc 4120   omcom 4331  (class class class)co 5532    +o coa 6021    .o comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  nnmcom  6091
  Copyright terms: Public domain W3C validator