ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacom Unicode version

Theorem nnacom 6086
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )

Proof of Theorem nnacom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5539 . . . . 5  |-  ( x  =  A  ->  (
x  +o  B )  =  ( A  +o  B ) )
2 oveq2 5540 . . . . 5  |-  ( x  =  A  ->  ( B  +o  x )  =  ( B  +o  A
) )
31, 2eqeq12d 2095 . . . 4  |-  ( x  =  A  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( A  +o  B )  =  ( B  +o  A ) ) )
43imbi2d 228 . . 3  |-  ( x  =  A  ->  (
( B  e.  om  ->  ( x  +o  B
)  =  ( B  +o  x ) )  <-> 
( B  e.  om  ->  ( A  +o  B
)  =  ( B  +o  A ) ) ) )
5 oveq1 5539 . . . . 5  |-  ( x  =  (/)  ->  ( x  +o  B )  =  ( (/)  +o  B
) )
6 oveq2 5540 . . . . 5  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
75, 6eqeq12d 2095 . . . 4  |-  ( x  =  (/)  ->  ( ( x  +o  B )  =  ( B  +o  x )  <->  ( (/)  +o  B
)  =  ( B  +o  (/) ) ) )
8 oveq1 5539 . . . . 5  |-  ( x  =  y  ->  (
x  +o  B )  =  ( y  +o  B ) )
9 oveq2 5540 . . . . 5  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
108, 9eqeq12d 2095 . . . 4  |-  ( x  =  y  ->  (
( x  +o  B
)  =  ( B  +o  x )  <->  ( y  +o  B )  =  ( B  +o  y ) ) )
11 oveq1 5539 . . . . 5  |-  ( x  =  suc  y  -> 
( x  +o  B
)  =  ( suc  y  +o  B ) )
12 oveq2 5540 . . . . 5  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1311, 12eqeq12d 2095 . . . 4  |-  ( x  =  suc  y  -> 
( ( x  +o  B )  =  ( B  +o  x )  <-> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
14 nna0r 6080 . . . . 5  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  B )
15 nna0 6076 . . . . 5  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
1614, 15eqtr4d 2116 . . . 4  |-  ( B  e.  om  ->  ( (/) 
+o  B )  =  ( B  +o  (/) ) )
17 suceq 4157 . . . . . 6  |-  ( ( y  +o  B )  =  ( B  +o  y )  ->  suc  ( y  +o  B
)  =  suc  ( B  +o  y ) )
18 oveq2 5540 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  B ) )
19 oveq2 5540 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
y  +o  x )  =  ( y  +o  B ) )
20 suceq 4157 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  B )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2119, 20syl 14 . . . . . . . . . . 11  |-  ( x  =  B  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  B ) )
2218, 21eqeq12d 2095 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) ) )
2322imbi2d 228 . . . . . . . . 9  |-  ( x  =  B  ->  (
( y  e.  om  ->  ( suc  y  +o  x )  =  suc  ( y  +o  x
) )  <->  ( y  e.  om  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B ) ) ) )
24 oveq2 5540 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( suc  y  +o  x )  =  ( suc  y  +o  (/) ) )
25 oveq2 5540 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( y  +o  x )  =  ( y  +o  (/) ) )
26 suceq 4157 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  (/) )  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2725, 26syl 14 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  suc  (
y  +o  x )  =  suc  ( y  +o  (/) ) )
2824, 27eqeq12d 2095 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( suc  y  +o  x
)  =  suc  (
y  +o  x )  <-> 
( suc  y  +o  (/) )  =  suc  (
y  +o  (/) ) ) )
29 oveq2 5540 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( suc  y  +o  x
)  =  ( suc  y  +o  z ) )
30 oveq2 5540 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
y  +o  x )  =  ( y  +o  z ) )
31 suceq 4157 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3230, 31syl 14 . . . . . . . . . . 11  |-  ( x  =  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  z ) )
3329, 32eqeq12d 2095 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  z )  =  suc  ( y  +o  z
) ) )
34 oveq2 5540 . . . . . . . . . . 11  |-  ( x  =  suc  z  -> 
( suc  y  +o  x )  =  ( suc  y  +o  suc  z ) )
35 oveq2 5540 . . . . . . . . . . . 12  |-  ( x  =  suc  z  -> 
( y  +o  x
)  =  ( y  +o  suc  z ) )
36 suceq 4157 . . . . . . . . . . . 12  |-  ( ( y  +o  x )  =  ( y  +o 
suc  z )  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3735, 36syl 14 . . . . . . . . . . 11  |-  ( x  =  suc  z  ->  suc  ( y  +o  x
)  =  suc  (
y  +o  suc  z
) )
3834, 37eqeq12d 2095 . . . . . . . . . 10  |-  ( x  =  suc  z  -> 
( ( suc  y  +o  x )  =  suc  ( y  +o  x
)  <->  ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z ) ) )
39 peano2 4336 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  suc  y  e.  om )
40 nna0 6076 . . . . . . . . . . . 12  |-  ( suc  y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
4139, 40syl 14 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  y )
42 nna0 6076 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
y  +o  (/) )  =  y )
43 suceq 4157 . . . . . . . . . . . 12  |-  ( ( y  +o  (/) )  =  y  ->  suc  ( y  +o  (/) )  =  suc  y )
4442, 43syl 14 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  ( y  +o  (/) )  =  suc  y )
4541, 44eqtr4d 2116 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( suc  y  +o  (/) )  =  suc  ( y  +o  (/) ) )
46 suceq 4157 . . . . . . . . . . . 12  |-  ( ( suc  y  +o  z
)  =  suc  (
y  +o  z )  ->  suc  ( suc  y  +o  z )  =  suc  suc  ( y  +o  z ) )
47 nnasuc 6078 . . . . . . . . . . . . . 14  |-  ( ( suc  y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
4839, 47sylan 277 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( suc  y  +o 
suc  z )  =  suc  ( suc  y  +o  z ) )
49 nnasuc 6078 . . . . . . . . . . . . . 14  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  +o  suc  z )  =  suc  ( y  +o  z
) )
50 suceq 4157 . . . . . . . . . . . . . 14  |-  ( ( y  +o  suc  z
)  =  suc  (
y  +o  z )  ->  suc  ( y  +o  suc  z )  =  suc  suc  ( y  +o  z ) )
5149, 50syl 14 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  z  e.  om )  ->  suc  ( y  +o 
suc  z )  =  suc  suc  ( y  +o  z ) )
5248, 51eqeq12d 2095 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  suc  z )  =  suc  ( y  +o 
suc  z )  <->  suc  ( suc  y  +o  z )  =  suc  suc  (
y  +o  z ) ) )
5346, 52syl5ibr 154 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) )
5453expcom 114 . . . . . . . . . 10  |-  ( z  e.  om  ->  (
y  e.  om  ->  ( ( suc  y  +o  z )  =  suc  ( y  +o  z
)  ->  ( suc  y  +o  suc  z )  =  suc  ( y  +o  suc  z ) ) ) )
5528, 33, 38, 45, 54finds2 4342 . . . . . . . . 9  |-  ( x  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  x
)  =  suc  (
y  +o  x ) ) )
5623, 55vtoclga 2664 . . . . . . . 8  |-  ( B  e.  om  ->  (
y  e.  om  ->  ( suc  y  +o  B
)  =  suc  (
y  +o  B ) ) )
5756imp 122 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( suc  y  +o  B )  =  suc  ( y  +o  B
) )
58 nnasuc 6078 . . . . . . 7  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
5957, 58eqeq12d 2095 . . . . . 6  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( suc  y  +o  B )  =  ( B  +o  suc  y
)  <->  suc  ( y  +o  B )  =  suc  ( B  +o  y
) ) )
6017, 59syl5ibr 154 . . . . 5  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( ( y  +o  B )  =  ( B  +o  y )  ->  ( suc  y  +o  B )  =  ( B  +o  suc  y
) ) )
6160expcom 114 . . . 4  |-  ( y  e.  om  ->  ( B  e.  om  ->  ( ( y  +o  B
)  =  ( B  +o  y )  -> 
( suc  y  +o  B )  =  ( B  +o  suc  y
) ) ) )
627, 10, 13, 16, 61finds2 4342 . . 3  |-  ( x  e.  om  ->  ( B  e.  om  ->  ( x  +o  B )  =  ( B  +o  x ) ) )
634, 62vtoclga 2664 . 2  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( A  +o  B )  =  ( B  +o  A ) ) )
6463imp 122 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  =  ( B  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   (/)c0 3251   suc csuc 4120   omcom 4331  (class class class)co 5532    +o coa 6021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028
This theorem is referenced by:  nnmsucr  6090  nnaordi  6104  nnaordr  6106  nnaword  6107  nnaword2  6110  nnawordi  6111  addcompig  6519  nqpnq0nq  6643  prarloclemlt  6683  prarloclemlo  6684
  Copyright terms: Public domain W3C validator