| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ontr2exmid | Unicode version | ||
| Description: An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| ontr2exmid.1 |
|
| Ref | Expression |
|---|---|
| ontr2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3079 |
. . . . 5
| |
| 2 | p0ex 3959 |
. . . . . 6
| |
| 3 | 2 | prid2 3499 |
. . . . 5
|
| 4 | 2ordpr 4267 |
. . . . . . 7
| |
| 5 | pp0ex 3960 |
. . . . . . . 8
| |
| 6 | 5 | elon 4129 |
. . . . . . 7
|
| 7 | 4, 6 | mpbir 144 |
. . . . . 6
|
| 8 | ordtriexmidlem 4263 |
. . . . . . . 8
| |
| 9 | ontr2exmid.1 |
. . . . . . . 8
| |
| 10 | sseq1 3020 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | anbi1d 452 |
. . . . . . . . . . . 12
|
| 12 | eleq1 2141 |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | imbi12d 232 |
. . . . . . . . . . 11
|
| 14 | 13 | ralbidv 2368 |
. . . . . . . . . 10
|
| 15 | 14 | albidv 1745 |
. . . . . . . . 9
|
| 16 | 15 | rspcv 2697 |
. . . . . . . 8
|
| 17 | 8, 9, 16 | mp2 16 |
. . . . . . 7
|
| 18 | sseq2 3021 |
. . . . . . . . . . 11
| |
| 19 | eleq1 2141 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | anbi12d 456 |
. . . . . . . . . 10
|
| 21 | 20 | imbi1d 229 |
. . . . . . . . 9
|
| 22 | 21 | ralbidv 2368 |
. . . . . . . 8
|
| 23 | 2, 22 | spcv 2691 |
. . . . . . 7
|
| 24 | 17, 23 | ax-mp 7 |
. . . . . 6
|
| 25 | eleq2 2142 |
. . . . . . . . 9
| |
| 26 | 25 | anbi2d 451 |
. . . . . . . 8
|
| 27 | eleq2 2142 |
. . . . . . . 8
| |
| 28 | 26, 27 | imbi12d 232 |
. . . . . . 7
|
| 29 | 28 | rspcv 2697 |
. . . . . 6
|
| 30 | 7, 24, 29 | mp2 16 |
. . . . 5
|
| 31 | 1, 3, 30 | mp2an 416 |
. . . 4
|
| 32 | elpri 3421 |
. . . 4
| |
| 33 | 31, 32 | ax-mp 7 |
. . 3
|
| 34 | ordtriexmidlem2 4264 |
. . . 4
| |
| 35 | 0ex 3905 |
. . . . 5
| |
| 36 | biidd 170 |
. . . . 5
| |
| 37 | 35, 36 | rabsnt 3467 |
. . . 4
|
| 38 | 34, 37 | orim12i 708 |
. . 3
|
| 39 | 33, 38 | ax-mp 7 |
. 2
|
| 40 | orcom 679 |
. 2
| |
| 41 | 39, 40 | mpbi 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |