| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmidlem | Unicode version | ||
| Description: A set which is |
| Ref | Expression |
|---|---|
| ordtri2or2exmidlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 495 |
. . . . . . 7
| |
| 2 | noel 3255 |
. . . . . . . . 9
| |
| 3 | eleq2 2142 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mtbiri 632 |
. . . . . . . 8
|
| 5 | 4 | adantl 271 |
. . . . . . 7
|
| 6 | 1, 5 | pm2.21dd 582 |
. . . . . 6
|
| 7 | eleq2 2142 |
. . . . . . . . . . 11
| |
| 8 | 7 | biimpac 292 |
. . . . . . . . . 10
|
| 9 | velsn 3415 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | sylib 120 |
. . . . . . . . 9
|
| 11 | orc 665 |
. . . . . . . . . 10
| |
| 12 | vex 2604 |
. . . . . . . . . . 11
| |
| 13 | 12 | elpr 3419 |
. . . . . . . . . 10
|
| 14 | 11, 13 | sylibr 132 |
. . . . . . . . 9
|
| 15 | 10, 14 | syl 14 |
. . . . . . . 8
|
| 16 | 15 | adantlr 460 |
. . . . . . 7
|
| 17 | biidd 170 |
. . . . . . . . . 10
| |
| 18 | 17 | elrab 2749 |
. . . . . . . . 9
|
| 19 | 18 | simprbi 269 |
. . . . . . . 8
|
| 20 | 19 | ad2antlr 472 |
. . . . . . 7
|
| 21 | biidd 170 |
. . . . . . . 8
| |
| 22 | 21 | elrab 2749 |
. . . . . . 7
|
| 23 | 16, 20, 22 | sylanbrc 408 |
. . . . . 6
|
| 24 | elrabi 2746 |
. . . . . . . 8
| |
| 25 | vex 2604 |
. . . . . . . . 9
| |
| 26 | 25 | elpr 3419 |
. . . . . . . 8
|
| 27 | 24, 26 | sylib 120 |
. . . . . . 7
|
| 28 | 27 | adantl 271 |
. . . . . 6
|
| 29 | 6, 23, 28 | mpjaodan 744 |
. . . . 5
|
| 30 | 29 | gen2 1379 |
. . . 4
|
| 31 | dftr2 3877 |
. . . 4
| |
| 32 | 30, 31 | mpbir 144 |
. . 3
|
| 33 | ssrab2 3079 |
. . 3
| |
| 34 | 2ordpr 4267 |
. . 3
| |
| 35 | trssord 4135 |
. . 3
| |
| 36 | 32, 33, 34, 35 | mp3an 1268 |
. 2
|
| 37 | pp0ex 3960 |
. . . 4
| |
| 38 | 37 | rabex 3922 |
. . 3
|
| 39 | 38 | elon 4129 |
. 2
|
| 40 | 36, 39 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: ordtri2or2exmid 4314 |
| Copyright terms: Public domain | W3C validator |