| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordom | Unicode version | ||
| Description: Omega is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| ordom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn 4346 |
. . . 4
| |
| 2 | 1 | gen2 1379 |
. . 3
|
| 3 | dftr2 3877 |
. . 3
| |
| 4 | 2, 3 | mpbir 144 |
. 2
|
| 5 | treq 3881 |
. . . 4
| |
| 6 | treq 3881 |
. . . 4
| |
| 7 | treq 3881 |
. . . 4
| |
| 8 | tr0 3886 |
. . . 4
| |
| 9 | suctr 4176 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 5, 6, 7, 6, 8, 10 | finds 4341 |
. . 3
|
| 12 | 11 | rgen 2416 |
. 2
|
| 13 | dford3 4122 |
. 2
| |
| 14 | 4, 12, 13 | mpbir2an 883 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-int 3637 df-tr 3876 df-iord 4121 df-suc 4126 df-iom 4332 |
| This theorem is referenced by: omelon2 4348 limom 4354 |
| Copyright terms: Public domain | W3C validator |