ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem2 Unicode version

Theorem phplem2 6339
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )

Proof of Theorem phplem2
StepHypRef Expression
1 phplem2.2 . . . . . . . 8  |-  B  e. 
_V
2 phplem2.1 . . . . . . . 8  |-  A  e. 
_V
31, 2opex 3984 . . . . . . 7  |-  <. B ,  A >.  e.  _V
43snex 3957 . . . . . 6  |-  { <. B ,  A >. }  e.  _V
51, 2f1osn 5186 . . . . . 6  |-  { <. B ,  A >. } : { B } -1-1-onto-> { A }
6 f1oen3g 6257 . . . . . 6  |-  ( ( { <. B ,  A >. }  e.  _V  /\  {
<. B ,  A >. } : { B } -1-1-onto-> { A } )  ->  { B }  ~~  { A }
)
74, 5, 6mp2an 416 . . . . 5  |-  { B }  ~~  { A }
8 difss 3098 . . . . . . 7  |-  ( A 
\  { B }
)  C_  A
92, 8ssexi 3916 . . . . . 6  |-  ( A 
\  { B }
)  e.  _V
109enref 6268 . . . . 5  |-  ( A 
\  { B }
)  ~~  ( A  \  { B } )
117, 10pm3.2i 266 . . . 4  |-  ( { B }  ~~  { A }  /\  ( A  \  { B }
)  ~~  ( A  \  { B } ) )
12 incom 3158 . . . . . 6  |-  ( { A }  i^i  ( A  \  { B }
) )  =  ( ( A  \  { B } )  i^i  { A } )
13 ssrin 3191 . . . . . . . . 9  |-  ( ( A  \  { B } )  C_  A  ->  ( ( A  \  { B } )  i^i 
{ A } ) 
C_  ( A  i^i  { A } ) )
148, 13ax-mp 7 . . . . . . . 8  |-  ( ( A  \  { B } )  i^i  { A } )  C_  ( A  i^i  { A }
)
15 nnord 4352 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
16 orddisj 4289 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
1715, 16syl 14 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  i^i  { A }
)  =  (/) )
1814, 17syl5sseq 3047 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  C_  (/) )
19 ss0 3284 . . . . . . 7  |-  ( ( ( A  \  { B } )  i^i  { A } )  C_  (/)  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2018, 19syl 14 . . . . . 6  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2112, 20syl5eq 2125 . . . . 5  |-  ( A  e.  om  ->  ( { A }  i^i  ( A  \  { B }
) )  =  (/) )
22 disjdif 3316 . . . . 5  |-  ( { B }  i^i  ( A  \  { B }
) )  =  (/)
2321, 22jctil 305 . . . 4  |-  ( A  e.  om  ->  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )
24 unen 6316 . . . 4  |-  ( ( ( { B }  ~~  { A }  /\  ( A  \  { B } )  ~~  ( A  \  { B }
) )  /\  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )  -> 
( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
2511, 23, 24sylancr 405 . . 3  |-  ( A  e.  om  ->  ( { B }  u.  ( A  \  { B }
) )  ~~  ( { A }  u.  ( A  \  { B }
) ) )
2625adantr 270 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
27 uncom 3116 . . 3  |-  ( { B }  u.  ( A  \  { B }
) )  =  ( ( A  \  { B } )  u.  { B } )
28 nndifsnid 6103 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( ( A  \  { B } )  u. 
{ B } )  =  A )
2927, 28syl5eq 2125 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  =  A )
30 phplem1 6338 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
3126, 29, 303brtr3d 3814 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   _Vcvv 2601    \ cdif 2970    u. cun 2971    i^i cin 2972    C_ wss 2973   (/)c0 3251   {csn 3398   <.cop 3401   class class class wbr 3785   Ord word 4117   suc csuc 4120   omcom 4331   -1-1-onto->wf1o 4921    ~~ cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-en 6245
This theorem is referenced by:  phplem3  6340
  Copyright terms: Public domain W3C validator