ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq Unicode version

Theorem qredeq 10478
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 8356 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
21adantr 270 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3 nncn 8047 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
43adantl 271 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
5 nnap0 8068 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N #  0 )
65adantl 271 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
72, 4, 6divclapd 7877 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
873adant3 958 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  /  N )  e.  CC )
98adantr 270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  /  N )  e.  CC )
10 zcn 8356 . . . . . . . . . 10  |-  ( P  e.  ZZ  ->  P  e.  CC )
1110adantr 270 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  P  e.  CC )
12 nncn 8047 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q  e.  CC )
1312adantl 271 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q  e.  CC )
14 nnap0 8068 . . . . . . . . . 10  |-  ( Q  e.  NN  ->  Q #  0 )
1514adantl 271 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  Q #  0 )
1611, 13, 15divclapd 7877 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  CC )
17163adant3 958 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  /  Q )  e.  CC )
1817adantl 271 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( P  /  Q )  e.  CC )
1933ad2ant2 960 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  CC )
2019adantr 270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  CC )
2153ad2ant2 960 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N #  0 )
2221adantr 270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N #  0 )
239, 18, 20, 22mulcanapd 7751 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  /  N
)  =  ( P  /  Q ) ) )
242, 4, 6divcanap2d 7879 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
25243adant3 958 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  x.  ( M  /  N ) )  =  M )
2625adantr 270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( M  /  N
) )  =  M )
2726eqeq1d 2089 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( M  /  N ) )  =  ( N  x.  ( P  /  Q ) )  <-> 
M  =  ( N  x.  ( P  /  Q ) ) ) )
2823, 27bitr3d 188 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
2913ad2ant1 959 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  CC )
3029adantr 270 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  CC )
31 mulcl 7100 . . . . . . 7  |-  ( ( N  e.  CC  /\  ( P  /  Q
)  e.  CC )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
3219, 17, 31syl2an 283 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( P  /  Q
) )  e.  CC )
33123ad2ant2 960 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  CC )
3433adantl 271 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  CC )
35143ad2ant2 960 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q #  0 )
3635adantl 271 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q #  0 )
3730, 32, 34, 36mulcanap2d 7752 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  M  =  ( N  x.  ( P  /  Q ) ) ) )
3820, 18, 34mulassd 7142 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  ( ( P  /  Q )  x.  Q ) ) )
3911, 13, 15divcanap1d 7878 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( ( P  /  Q )  x.  Q
)  =  P )
40393adant3 958 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  (
( P  /  Q
)  x.  Q )  =  P )
4140adantl 271 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( P  /  Q )  x.  Q )  =  P )
4241oveq2d 5548 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  ( ( P  /  Q )  x.  Q
) )  =  ( N  x.  P ) )
4338, 42eqtrd 2113 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  ( P  /  Q ) )  x.  Q )  =  ( N  x.  P ) )
4443eqeq2d 2092 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( ( N  x.  ( P  /  Q
) )  x.  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
4537, 44bitr3d 188 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  =  ( N  x.  ( P  /  Q ) )  <-> 
( M  x.  Q
)  =  ( N  x.  P ) ) )
4628, 45bitrd 186 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
47 nnz 8370 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
48473ad2ant2 960 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  ZZ )
49 simp2 939 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  NN )
5048, 49anim12i 331 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5150adantr 270 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  Q  e.  NN ) )
5248adantr 270 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  e.  ZZ )
53 simpl1 941 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  M  e.  ZZ )
54 nnz 8370 . . . . . . . . . . . 12  |-  ( Q  e.  NN  ->  Q  e.  ZZ )
55543ad2ant2 960 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  ZZ )
5655adantl 271 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  e.  ZZ )
5752, 53, 563jca 1118 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
5857adantr 270 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ ) )
59 simp1 938 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  ZZ )
60 dvdsmul1 10217 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  ZZ )  ->  N  ||  ( N  x.  P ) )
6148, 59, 60syl2an 283 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  N  ||  ( N  x.  P )
)
6261adantr 270 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( N  x.  P )
)
63 simpr 108 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( N  x.  P ) )
6462, 63breqtrrd 3811 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  ( M  x.  Q )
)
65 gcdcom 10365 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6647, 65sylan 277 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
6766ancoms 264 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
68673adant3 958 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  ( M  gcd  N
) )
69 simp3 940 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  gcd  N )  =  1 )
7068, 69eqtrd 2113 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( N  gcd  M )  =  1 )
7170ad2antrr 471 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  gcd  M )  =  1 )
7264, 71jca 300 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  ||  ( M  x.  Q
)  /\  ( N  gcd  M )  =  1 ) )
73 coprmdvds 10474 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  Q  e.  ZZ )  ->  (
( N  ||  ( M  x.  Q )  /\  ( N  gcd  M
)  =  1 )  ->  N  ||  Q
) )
7458, 72, 73sylc 61 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  ||  Q
)
75 dvdsle 10244 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  Q  e.  NN )  ->  ( N  ||  Q  ->  N  <_  Q )
)
7651, 74, 75sylc 61 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  <_  Q
)
77 simp2 939 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  NN )
7855, 77anim12i 331 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
7978ancoms 264 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
8079adantr 270 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  N  e.  NN ) )
81 simpr1 944 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  ZZ )
8256, 81, 523jca 1118 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
8382adantr 270 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ ) )
84 simp1 938 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  M  e.  ZZ )
85 dvdsmul2 10218 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( M  x.  Q ) )
8684, 55, 85syl2an 283 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  Q  ||  ( M  x.  Q )
)
8786adantr 270 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( M  x.  Q )
)
88103ad2ant1 959 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  P  e.  CC )
89 mulcom 7102 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  P  e.  CC )  ->  ( N  x.  P
)  =  ( P  x.  N ) )
9019, 88, 89syl2an 283 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9190adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  x.  P )  =  ( P  x.  N ) )
9263, 91eqtrd 2113 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  x.  Q )  =  ( P  x.  N ) )
9387, 92breqtrd 3809 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  ( P  x.  N )
)
94 gcdcom 10365 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9554, 94sylan 277 . . . . . . . . . . . . 13  |-  ( ( Q  e.  NN  /\  P  e.  ZZ )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
9695ancoms 264 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( Q  gcd  P
)  =  ( P  gcd  Q ) )
97963adant3 958 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  ( P  gcd  Q
) )
98 simp3 940 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( P  gcd  Q )  =  1 )
9997, 98eqtrd 2113 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  ( Q  gcd  P )  =  1 )
10099ad2antlr 472 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  gcd  P )  =  1 )
10193, 100jca 300 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( Q  ||  ( P  x.  N
)  /\  ( Q  gcd  P )  =  1 ) )
102 coprmdvds 10474 . . . . . . . 8  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  (
( Q  ||  ( P  x.  N )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  N
) )
10383, 101, 102sylc 61 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  ||  N
)
104 dvdsle 10244 . . . . . . 7  |-  ( ( Q  e.  ZZ  /\  N  e.  NN )  ->  ( Q  ||  N  ->  Q  <_  N )
)
10580, 103, 104sylc 61 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  <_  N
)
106 nnre 8046 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
1071063ad2ant2 960 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  N  e.  RR )
108107ad2antrr 471 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  e.  RR )
109 nnre 8046 . . . . . . . . 9  |-  ( Q  e.  NN  ->  Q  e.  RR )
1101093ad2ant2 960 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  ->  Q  e.  RR )
111110ad2antlr 472 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  Q  e.  RR )
112108, 111letri3d 7226 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  <->  ( N  <_  Q  /\  Q  <_  N
) ) )
11376, 105, 112mpbir2and 885 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  N  =  Q )
114 oveq2 5540 . . . . . . . . . 10  |-  ( N  =  Q  ->  ( M  x.  N )  =  ( M  x.  Q ) )
115114eqeq1d 2089 . . . . . . . . 9  |-  ( N  =  Q  ->  (
( M  x.  N
)  =  ( N  x.  P )  <->  ( M  x.  Q )  =  ( N  x.  P ) ) )
116115anbi2d 451 . . . . . . . 8  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  <-> 
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) ) ) )
117 mulcom 7102 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1181, 3, 117syl2an 283 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  x.  N
)  =  ( N  x.  M ) )
1191183adant3 958 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  ->  ( M  x.  N )  =  ( N  x.  M ) )
120119adantr 270 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( M  x.  N )  =  ( N  x.  M ) )
121120eqeq1d 2089 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  ( N  x.  M )  =  ( N  x.  P ) ) )
12288adantl 271 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  P  e.  CC )
12330, 122, 20, 22mulcanapd 7751 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( N  x.  M )  =  ( N  x.  P
)  <->  M  =  P
) )
124121, 123bitrd 186 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  N )  =  ( N  x.  P
)  <->  M  =  P
) )
125124biimpa 290 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  N
)  =  ( N  x.  P ) )  ->  M  =  P )
126116, 125syl6bir 162 . . . . . . 7  |-  ( N  =  Q  ->  (
( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  M  =  P ) )
127126com12 30 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  M  =  P ) )
128127ancrd 319 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( N  =  Q  ->  ( M  =  P  /\  N  =  Q ) ) )
129113, 128mpd 13 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  /\  ( M  x.  Q
)  =  ( N  x.  P ) )  ->  ( M  =  P  /\  N  =  Q ) )
130129ex 113 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  x.  Q )  =  ( N  x.  P
)  ->  ( M  =  P  /\  N  =  Q ) ) )
13146, 130sylbid 148 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 ) )  ->  ( ( M  /  N )  =  ( P  /  Q
)  ->  ( M  =  P  /\  N  =  Q ) ) )
1321313impia 1135 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )  /\  ( P  e.  ZZ  /\  Q  e.  NN  /\  ( P  gcd  Q )  =  1 )  /\  ( M  /  N
)  =  ( P  /  Q ) )  ->  ( M  =  P  /\  N  =  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982    x. cmul 6986    <_ cle 7154   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351    || cdvds 10195    gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  qredeu  10479
  Copyright terms: Public domain W3C validator