| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabrsndc | Unicode version | ||
| Description: A class abstraction over a decidable proposition restricted to a singleton is either the empty set or the singleton itself. (Contributed by Jim Kingdon, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| rabrsndc.1 |
|
| rabrsndc.2 |
|
| Ref | Expression |
|---|---|
| rabrsndc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabrsndc.1 |
. . . . . 6
| |
| 2 | rabrsndc.2 |
. . . . . . . 8
| |
| 3 | pm2.1dc 778 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 7 |
. . . . . . 7
|
| 5 | 4 | sbcth 2828 |
. . . . . 6
|
| 6 | 1, 5 | ax-mp 7 |
. . . . 5
|
| 7 | sbcor 2858 |
. . . . 5
| |
| 8 | 6, 7 | mpbi 143 |
. . . 4
|
| 9 | ralsns 3431 |
. . . . . 6
| |
| 10 | 1, 9 | ax-mp 7 |
. . . . 5
|
| 11 | ralsns 3431 |
. . . . . 6
| |
| 12 | 1, 11 | ax-mp 7 |
. . . . 5
|
| 13 | 10, 12 | orbi12i 713 |
. . . 4
|
| 14 | 8, 13 | mpbir 144 |
. . 3
|
| 15 | rabeq0 3274 |
. . . 4
| |
| 16 | eqcom 2083 |
. . . . 5
| |
| 17 | rabid2 2530 |
. . . . 5
| |
| 18 | 16, 17 | bitri 182 |
. . . 4
|
| 19 | 15, 18 | orbi12i 713 |
. . 3
|
| 20 | 14, 19 | mpbir 144 |
. 2
|
| 21 | eqeq1 2087 |
. . 3
| |
| 22 | eqeq1 2087 |
. . 3
| |
| 23 | 21, 22 | orbi12d 739 |
. 2
|
| 24 | 20, 23 | mpbiri 166 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-nul 3252 df-sn 3404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |