| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version | ||
| Description: If subtracting any set
from a finite set gives a finite set, any
proposition of the form |
| Ref | Expression |
|---|---|
| diffitest.1 |
|
| Ref | Expression |
|---|---|
| diffitest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 3905 |
. . . . . 6
| |
| 2 | snfig 6314 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 7 |
. . . . 5
|
| 4 | diffitest.1 |
. . . . 5
| |
| 5 | difeq1 3083 |
. . . . . . . 8
| |
| 6 | 5 | eleq1d 2147 |
. . . . . . 7
|
| 7 | 6 | albidv 1745 |
. . . . . 6
|
| 8 | 7 | rspcv 2697 |
. . . . 5
|
| 9 | 3, 4, 8 | mp2 16 |
. . . 4
|
| 10 | rabexg 3921 |
. . . . . 6
| |
| 11 | 3, 10 | ax-mp 7 |
. . . . 5
|
| 12 | difeq2 3084 |
. . . . . 6
| |
| 13 | 12 | eleq1d 2147 |
. . . . 5
|
| 14 | 11, 13 | spcv 2691 |
. . . 4
|
| 15 | 9, 14 | ax-mp 7 |
. . 3
|
| 16 | isfi 6264 |
. . 3
| |
| 17 | 15, 16 | mpbi 143 |
. 2
|
| 18 | 0elnn 4358 |
. . . . 5
| |
| 19 | breq2 3789 |
. . . . . . . . . 10
| |
| 20 | en0 6298 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | syl6bb 194 |
. . . . . . . . 9
|
| 22 | 21 | biimpac 292 |
. . . . . . . 8
|
| 23 | rabeq0 3274 |
. . . . . . . . 9
| |
| 24 | notrab 3241 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq1i 2088 |
. . . . . . . . 9
|
| 26 | 1 | snm 3510 |
. . . . . . . . . 10
|
| 27 | r19.3rmv 3332 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 7 |
. . . . . . . . 9
|
| 29 | 23, 25, 28 | 3bitr4i 210 |
. . . . . . . 8
|
| 30 | 22, 29 | sylib 120 |
. . . . . . 7
|
| 31 | 30 | olcd 685 |
. . . . . 6
|
| 32 | ensym 6284 |
. . . . . . . 8
| |
| 33 | elex2 2615 |
. . . . . . . 8
| |
| 34 | enm 6317 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | syl2an 283 |
. . . . . . 7
|
| 36 | biidd 170 |
. . . . . . . . . . . 12
| |
| 37 | 36 | elrab 2749 |
. . . . . . . . . . 11
|
| 38 | 37 | simprbi 269 |
. . . . . . . . . 10
|
| 39 | 38 | orcd 684 |
. . . . . . . . 9
|
| 40 | 39, 24 | eleq2s 2173 |
. . . . . . . 8
|
| 41 | 40 | exlimiv 1529 |
. . . . . . 7
|
| 42 | 35, 41 | syl 14 |
. . . . . 6
|
| 43 | 31, 42 | jaodan 743 |
. . . . 5
|
| 44 | 18, 43 | sylan2 280 |
. . . 4
|
| 45 | 44 | ancoms 264 |
. . 3
|
| 46 | 45 | rexlimiva 2472 |
. 2
|
| 47 | 17, 46 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-1o 6024 df-er 6129 df-en 6245 df-fin 6247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |