ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnz Unicode version

Theorem recnz 8440
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
recnz  |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A
)  e.  ZZ )

Proof of Theorem recnz
StepHypRef Expression
1 recgt1i 7976 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 0  <  (
1  /  A )  /\  ( 1  /  A )  <  1
) )
21simprd 112 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  /  A
)  <  1 )
31simpld 110 . . . 4  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
0  <  ( 1  /  A ) )
4 zgt0ge1 8409 . . . 4  |-  ( ( 1  /  A )  e.  ZZ  ->  (
0  <  ( 1  /  A )  <->  1  <_  ( 1  /  A ) ) )
53, 4syl5ibcom 153 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( ( 1  /  A )  e.  ZZ  ->  1  <_  ( 1  /  A ) ) )
6 1re 7118 . . . 4  |-  1  e.  RR
7 0lt1 7236 . . . . . . . 8  |-  0  <  1
8 0re 7119 . . . . . . . . 9  |-  0  e.  RR
9 lttr 7185 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
108, 6, 9mp3an12 1258 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
117, 10mpani 420 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  <  A  ->  0  <  A ) )
1211imdistani 433 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( A  e.  RR  /\  0  <  A ) )
13 gt0ap0 7725 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
1412, 13syl 14 . . . . 5  |-  ( ( A  e.  RR  /\  1  <  A )  ->  A #  0 )
15 rerecclap 7818 . . . . 5  |-  ( ( A  e.  RR  /\  A #  0 )  ->  (
1  /  A )  e.  RR )
1614, 15syldan 276 . . . 4  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  /  A
)  e.  RR )
17 lenlt 7187 . . . 4  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  <_ 
( 1  /  A
)  <->  -.  ( 1  /  A )  <  1 ) )
186, 16, 17sylancr 405 . . 3  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( 1  <_  (
1  /  A )  <->  -.  ( 1  /  A
)  <  1 ) )
195, 18sylibd 147 . 2  |-  ( ( A  e.  RR  /\  1  <  A )  -> 
( ( 1  /  A )  e.  ZZ  ->  -.  ( 1  /  A )  <  1
) )
202, 19mt2d 587 1  |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   RRcr 6980   0cc0 6981   1c1 6982    < clt 7153    <_ cle 7154   # cap 7681    / cdiv 7760   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  halfnz  8443  facndiv  9666
  Copyright terms: Public domain W3C validator