| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recsfval | Unicode version | ||
| Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| recsfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs 5943 |
. 2
| |
| 2 | tfrlem.1 |
. . 3
| |
| 3 | 2 | unieqi 3611 |
. 2
|
| 4 | 1, 3 | eqtr4i 2104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-uni 3602 df-recs 5943 |
| This theorem is referenced by: tfrlem6 5955 tfrlem7 5956 tfrlem8 5957 tfrlem9 5958 tfrlemibfn 5965 tfrlemiubacc 5967 tfrlemi14d 5970 tfrexlem 5971 |
| Copyright terms: Public domain | W3C validator |