ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recsfval Unicode version

Theorem recsfval 5954
Description: Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
recsfval  |- recs ( F )  =  U. A
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem recsfval
StepHypRef Expression
1 df-recs 5943 . 2  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
2 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
32unieqi 3611 . 2  |-  U. A  =  U. { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) }
41, 3eqtr4i 2104 1  |- recs ( F )  =  U. A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   {cab 2067   A.wral 2348   E.wrex 2349   U.cuni 3601   Oncon0 4118    |` cres 4365    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-uni 3602  df-recs 5943
This theorem is referenced by:  tfrlem6  5955  tfrlem7  5956  tfrlem8  5957  tfrlem9  5958  tfrlemibfn  5965  tfrlemiubacc  5967  tfrlemi14d  5970  tfrexlem  5971
  Copyright terms: Public domain W3C validator