| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version | ||
| Description: The union of |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemi1.3 |
|
| tfrlemi1.4 |
|
| tfrlemi1.5 |
|
| Ref | Expression |
|---|---|
| tfrlemiubacc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.1 |
. . . . . . . . 9
| |
| 2 | tfrlemisucfn.2 |
. . . . . . . . 9
| |
| 3 | tfrlemi1.3 |
. . . . . . . . 9
| |
| 4 | tfrlemi1.4 |
. . . . . . . . 9
| |
| 5 | tfrlemi1.5 |
. . . . . . . . 9
| |
| 6 | 1, 2, 3, 4, 5 | tfrlemibfn 5965 |
. . . . . . . 8
|
| 7 | fndm 5018 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 1, 2, 3, 4, 5 | tfrlemibacc 5963 |
. . . . . . . . . 10
|
| 10 | 9 | unissd 3625 |
. . . . . . . . 9
|
| 11 | 1 | recsfval 5954 |
. . . . . . . . 9
|
| 12 | 10, 11 | syl6sseqr 3046 |
. . . . . . . 8
|
| 13 | dmss 4552 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 8, 14 | eqsstr3d 3034 |
. . . . . 6
|
| 16 | 15 | sselda 2999 |
. . . . 5
|
| 17 | 1 | tfrlem9 5958 |
. . . . 5
|
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 1 | tfrlem7 5956 |
. . . . . 6
|
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | 12 | adantr 270 |
. . . . 5
|
| 22 | 8 | eleq2d 2148 |
. . . . . 6
|
| 23 | 22 | biimpar 291 |
. . . . 5
|
| 24 | funssfv 5220 |
. . . . 5
| |
| 25 | 20, 21, 23, 24 | syl3anc 1169 |
. . . 4
|
| 26 | eloni 4130 |
. . . . . . . . 9
| |
| 27 | 4, 26 | syl 14 |
. . . . . . . 8
|
| 28 | ordelss 4134 |
. . . . . . . 8
| |
| 29 | 27, 28 | sylan 277 |
. . . . . . 7
|
| 30 | 8 | adantr 270 |
. . . . . . 7
|
| 31 | 29, 30 | sseqtr4d 3036 |
. . . . . 6
|
| 32 | fun2ssres 4963 |
. . . . . 6
| |
| 33 | 20, 21, 31, 32 | syl3anc 1169 |
. . . . 5
|
| 34 | 33 | fveq2d 5202 |
. . . 4
|
| 35 | 18, 25, 34 | 3eqtr3d 2121 |
. . 3
|
| 36 | 35 | ralrimiva 2434 |
. 2
|
| 37 | fveq2 5198 |
. . . 4
| |
| 38 | reseq2 4625 |
. . . . 5
| |
| 39 | 38 | fveq2d 5202 |
. . . 4
|
| 40 | 37, 39 | eqeq12d 2095 |
. . 3
|
| 41 | 40 | cbvralv 2577 |
. 2
|
| 42 | 36, 41 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-recs 5943 |
| This theorem is referenced by: tfrlemiex 5968 |
| Copyright terms: Public domain | W3C validator |