| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > regexmidlemm | Unicode version | ||
| Description: Lemma for regexmid 4278. |
| Ref | Expression |
|---|---|
| regexmidlemm.a |
|
| Ref | Expression |
|---|---|
| regexmidlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p0ex 3959 |
. . . 4
| |
| 2 | 1 | prid2 3499 |
. . 3
|
| 3 | eqid 2081 |
. . . 4
| |
| 4 | 3 | orci 682 |
. . 3
|
| 5 | eqeq1 2087 |
. . . . 5
| |
| 6 | eqeq1 2087 |
. . . . . 6
| |
| 7 | 6 | anbi1d 452 |
. . . . 5
|
| 8 | 5, 7 | orbi12d 739 |
. . . 4
|
| 9 | regexmidlemm.a |
. . . 4
| |
| 10 | 8, 9 | elrab2 2751 |
. . 3
|
| 11 | 2, 4, 10 | mpbir2an 883 |
. 2
|
| 12 | elex2 2615 |
. 2
| |
| 13 | 11, 12 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: regexmid 4278 reg2exmid 4279 reg3exmid 4322 nnregexmid 4360 |
| Copyright terms: Public domain | W3C validator |