ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid Unicode version

Theorem ordsucunielexmid 4274
Description: The converse of sucunielr 4254 (where  B is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
Assertion
Ref Expression
ordsucunielexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ordsucunielexmid
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4130 . . . . . . . 8  |-  ( b  e.  On  ->  Ord  b )
2 ordtr 4133 . . . . . . . 8  |-  ( Ord  b  ->  Tr  b
)
31, 2syl 14 . . . . . . 7  |-  ( b  e.  On  ->  Tr  b )
4 vex 2604 . . . . . . . 8  |-  b  e. 
_V
54unisuc 4168 . . . . . . 7  |-  ( Tr  b  <->  U. suc  b  =  b )
63, 5sylib 120 . . . . . 6  |-  ( b  e.  On  ->  U. suc  b  =  b )
76eleq2d 2148 . . . . 5  |-  ( b  e.  On  ->  (
a  e.  U. suc  b 
<->  a  e.  b ) )
87adantl 271 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  <->  a  e.  b ) )
9 suceloni 4245 . . . . 5  |-  ( b  e.  On  ->  suc  b  e.  On )
10 ordsucunielexmid.1 . . . . . 6  |-  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
11 eleq1 2141 . . . . . . . 8  |-  ( x  =  a  ->  (
x  e.  U. y  <->  a  e.  U. y ) )
12 suceq 4157 . . . . . . . . 9  |-  ( x  =  a  ->  suc  x  =  suc  a )
1312eleq1d 2147 . . . . . . . 8  |-  ( x  =  a  ->  ( suc  x  e.  y  <->  suc  a  e.  y ) )
1411, 13imbi12d 232 . . . . . . 7  |-  ( x  =  a  ->  (
( x  e.  U. y  ->  suc  x  e.  y )  <->  ( a  e.  U. y  ->  suc  a  e.  y )
) )
15 unieq 3610 . . . . . . . . 9  |-  ( y  =  suc  b  ->  U. y  =  U. suc  b )
1615eleq2d 2148 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( a  e.  U. y 
<->  a  e.  U. suc  b ) )
17 eleq2 2142 . . . . . . . 8  |-  ( y  =  suc  b  -> 
( suc  a  e.  y 
<->  suc  a  e.  suc  b ) )
1816, 17imbi12d 232 . . . . . . 7  |-  ( y  =  suc  b  -> 
( ( a  e. 
U. y  ->  suc  a  e.  y )  <->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) ) )
1914, 18rspc2va 2714 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
suc  b  e.  On )  /\  A. x  e.  On  A. y  e.  On  ( x  e. 
U. y  ->  suc  x  e.  y )
)  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
2010, 19mpan2 415 . . . . 5  |-  ( ( a  e.  On  /\  suc  b  e.  On )  ->  ( a  e. 
U. suc  b  ->  suc  a  e.  suc  b
) )
219, 20sylan2 280 . . . 4  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  U. suc  b  ->  suc  a  e.  suc  b ) )
228, 21sylbird 168 . . 3  |-  ( ( a  e.  On  /\  b  e.  On )  ->  ( a  e.  b  ->  suc  a  e.  suc  b ) )
2322rgen2a 2417 . 2  |-  A. a  e.  On  A. b  e.  On  ( a  e.  b  ->  suc  a  e. 
suc  b )
2423onsucelsucexmid 4273 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   A.wral 2348   U.cuni 3601   Tr wtr 3875   Ord word 4117   Oncon0 4118   suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator