| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucunielexmid | Unicode version | ||
| Description: The converse of sucunielr 4254 (where |
| Ref | Expression |
|---|---|
| ordsucunielexmid.1 |
|
| Ref | Expression |
|---|---|
| ordsucunielexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4130 |
. . . . . . . 8
| |
| 2 | ordtr 4133 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
|
| 4 | vex 2604 |
. . . . . . . 8
| |
| 5 | 4 | unisuc 4168 |
. . . . . . 7
|
| 6 | 3, 5 | sylib 120 |
. . . . . 6
|
| 7 | 6 | eleq2d 2148 |
. . . . 5
|
| 8 | 7 | adantl 271 |
. . . 4
|
| 9 | suceloni 4245 |
. . . . 5
| |
| 10 | ordsucunielexmid.1 |
. . . . . 6
| |
| 11 | eleq1 2141 |
. . . . . . . 8
| |
| 12 | suceq 4157 |
. . . . . . . . 9
| |
| 13 | 12 | eleq1d 2147 |
. . . . . . . 8
|
| 14 | 11, 13 | imbi12d 232 |
. . . . . . 7
|
| 15 | unieq 3610 |
. . . . . . . . 9
| |
| 16 | 15 | eleq2d 2148 |
. . . . . . . 8
|
| 17 | eleq2 2142 |
. . . . . . . 8
| |
| 18 | 16, 17 | imbi12d 232 |
. . . . . . 7
|
| 19 | 14, 18 | rspc2va 2714 |
. . . . . 6
|
| 20 | 10, 19 | mpan2 415 |
. . . . 5
|
| 21 | 9, 20 | sylan2 280 |
. . . 4
|
| 22 | 8, 21 | sylbird 168 |
. . 3
|
| 23 | 22 | rgen2a 2417 |
. 2
|
| 24 | 23 | onsucelsucexmid 4273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |