ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm0 Unicode version

Theorem reldm0 4571
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )

Proof of Theorem reldm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4480 . . 3  |-  Rel  (/)
2 eqrel 4447 . . 3  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
31, 2mpan2 415 . 2  |-  ( Rel 
A  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
4 eq0 3266 . . 3  |-  ( dom 
A  =  (/)  <->  A. x  -.  x  e.  dom  A )
5 alnex 1428 . . . . . 6  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  E. y <. x ,  y >.  e.  A )
6 vex 2604 . . . . . . 7  |-  x  e. 
_V
76eldm2 4551 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
85, 7xchbinxr 640 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  x  e.  dom  A )
9 noel 3255 . . . . . . 7  |-  -.  <. x ,  y >.  e.  (/)
109nbn 647 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1110albii 1399 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) )
128, 11bitr3i 184 . . . 4  |-  ( -.  x  e.  dom  A  <->  A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1312albii 1399 . . 3  |-  ( A. x  -.  x  e.  dom  A  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) ) )
144, 13bitr2i 183 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) )  <->  dom  A  =  (/) )
153, 14syl6bb 194 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   (/)c0 3251   <.cop 3401   dom cdm 4363   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-dm 4373
This theorem is referenced by:  relrn0  4612  fnresdisj  5029  fn0  5038  fsnunfv  5384
  Copyright terms: Public domain W3C validator