| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdif | Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| resdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5127 |
. . . . . 6
| |
| 2 | difss 3098 |
. . . . . . 7
| |
| 3 | fof 5126 |
. . . . . . . 8
| |
| 4 | fdm 5070 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | syl5sseqr 3048 |
. . . . . 6
|
| 7 | fores 5135 |
. . . . . 6
| |
| 8 | 1, 6, 7 | syl2anc 403 |
. . . . 5
|
| 9 | resres 4642 |
. . . . . . . 8
| |
| 10 | indif 3207 |
. . . . . . . . 9
| |
| 11 | 10 | reseq2i 4627 |
. . . . . . . 8
|
| 12 | 9, 11 | eqtri 2101 |
. . . . . . 7
|
| 13 | foeq1 5122 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 7 |
. . . . . 6
|
| 15 | 12 | rneqi 4580 |
. . . . . . . 8
|
| 16 | df-ima 4376 |
. . . . . . . 8
| |
| 17 | df-ima 4376 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3eqtr4i 2111 |
. . . . . . 7
|
| 19 | foeq3 5124 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 7 |
. . . . . 6
|
| 21 | 14, 20 | bitri 182 |
. . . . 5
|
| 22 | 8, 21 | sylib 120 |
. . . 4
|
| 23 | funres11 4991 |
. . . 4
| |
| 24 | dff1o3 5152 |
. . . . 5
| |
| 25 | 24 | biimpri 131 |
. . . 4
|
| 26 | 22, 23, 25 | syl2anr 284 |
. . 3
|
| 27 | 26 | 3adant3 958 |
. 2
|
| 28 | df-ima 4376 |
. . . . . . 7
| |
| 29 | forn 5129 |
. . . . . . 7
| |
| 30 | 28, 29 | syl5eq 2125 |
. . . . . 6
|
| 31 | df-ima 4376 |
. . . . . . 7
| |
| 32 | forn 5129 |
. . . . . . 7
| |
| 33 | 31, 32 | syl5eq 2125 |
. . . . . 6
|
| 34 | 30, 33 | anim12i 331 |
. . . . 5
|
| 35 | imadif 4999 |
. . . . . 6
| |
| 36 | difeq12 3085 |
. . . . . 6
| |
| 37 | 35, 36 | sylan9eq 2133 |
. . . . 5
|
| 38 | 34, 37 | sylan2 280 |
. . . 4
|
| 39 | 38 | 3impb 1134 |
. . 3
|
| 40 | f1oeq3 5139 |
. . 3
| |
| 41 | 39, 40 | syl 14 |
. 2
|
| 42 | 27, 41 | mpbid 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
| This theorem is referenced by: dif1en 6364 |
| Copyright terms: Public domain | W3C validator |