| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnref1o | Unicode version | ||
| Description: There is a natural
one-to-one mapping from |
| Ref | Expression |
|---|---|
| cnref1o.1 |
|
| Ref | Expression |
|---|---|
| cnref1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . . . . 8
| |
| 2 | 1 | recnd 7147 |
. . . . . . 7
|
| 3 | ax-icn 7071 |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | simpr 108 |
. . . . . . . . 9
| |
| 6 | 5 | recnd 7147 |
. . . . . . . 8
|
| 7 | 4, 6 | mulcld 7139 |
. . . . . . 7
|
| 8 | 2, 7 | addcld 7138 |
. . . . . 6
|
| 9 | 8 | rgen2a 2417 |
. . . . 5
|
| 10 | cnref1o.1 |
. . . . . 6
| |
| 11 | 10 | fnmpt2 5848 |
. . . . 5
|
| 12 | 9, 11 | ax-mp 7 |
. . . 4
|
| 13 | 1st2nd2 5821 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 5202 |
. . . . . . . 8
|
| 15 | df-ov 5535 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6eqr 2131 |
. . . . . . 7
|
| 17 | xp1st 5812 |
. . . . . . . 8
| |
| 18 | xp2nd 5813 |
. . . . . . . 8
| |
| 19 | 17 | recnd 7147 |
. . . . . . . . 9
|
| 20 | 3 | a1i 9 |
. . . . . . . . . 10
|
| 21 | 18 | recnd 7147 |
. . . . . . . . . 10
|
| 22 | 20, 21 | mulcld 7139 |
. . . . . . . . 9
|
| 23 | 19, 22 | addcld 7138 |
. . . . . . . 8
|
| 24 | oveq1 5539 |
. . . . . . . . 9
| |
| 25 | oveq2 5540 |
. . . . . . . . . 10
| |
| 26 | 25 | oveq2d 5548 |
. . . . . . . . 9
|
| 27 | 24, 26, 10 | ovmpt2g 5655 |
. . . . . . . 8
|
| 28 | 17, 18, 23, 27 | syl3anc 1169 |
. . . . . . 7
|
| 29 | 16, 28 | eqtrd 2113 |
. . . . . 6
|
| 30 | 29, 23 | eqeltrd 2155 |
. . . . 5
|
| 31 | 30 | rgen 2416 |
. . . 4
|
| 32 | ffnfv 5344 |
. . . 4
| |
| 33 | 12, 31, 32 | mpbir2an 883 |
. . 3
|
| 34 | 17, 18 | jca 300 |
. . . . . . 7
|
| 35 | xp1st 5812 |
. . . . . . . 8
| |
| 36 | xp2nd 5813 |
. . . . . . . 8
| |
| 37 | 35, 36 | jca 300 |
. . . . . . 7
|
| 38 | cru 7702 |
. . . . . . 7
| |
| 39 | 34, 37, 38 | syl2an 283 |
. . . . . 6
|
| 40 | fveq2 5198 |
. . . . . . . . 9
| |
| 41 | fveq2 5198 |
. . . . . . . . . 10
| |
| 42 | fveq2 5198 |
. . . . . . . . . . 11
| |
| 43 | 42 | oveq2d 5548 |
. . . . . . . . . 10
|
| 44 | 41, 43 | oveq12d 5550 |
. . . . . . . . 9
|
| 45 | 40, 44 | eqeq12d 2095 |
. . . . . . . 8
|
| 46 | 45, 29 | vtoclga 2664 |
. . . . . . 7
|
| 47 | 29, 46 | eqeqan12d 2096 |
. . . . . 6
|
| 48 | 1st2nd2 5821 |
. . . . . . . 8
| |
| 49 | 13, 48 | eqeqan12d 2096 |
. . . . . . 7
|
| 50 | vex 2604 |
. . . . . . . . 9
| |
| 51 | 1stexg 5814 |
. . . . . . . . 9
| |
| 52 | 50, 51 | ax-mp 7 |
. . . . . . . 8
|
| 53 | 2ndexg 5815 |
. . . . . . . . 9
| |
| 54 | 50, 53 | ax-mp 7 |
. . . . . . . 8
|
| 55 | 52, 54 | opth 3992 |
. . . . . . 7
|
| 56 | 49, 55 | syl6bb 194 |
. . . . . 6
|
| 57 | 39, 47, 56 | 3bitr4d 218 |
. . . . 5
|
| 58 | 57 | biimpd 142 |
. . . 4
|
| 59 | 58 | rgen2a 2417 |
. . 3
|
| 60 | dff13 5428 |
. . 3
| |
| 61 | 33, 59, 60 | mpbir2an 883 |
. 2
|
| 62 | cnre 7115 |
. . . . . 6
| |
| 63 | simpl 107 |
. . . . . . . . 9
| |
| 64 | simpr 108 |
. . . . . . . . 9
| |
| 65 | 63 | recnd 7147 |
. . . . . . . . . 10
|
| 66 | 3 | a1i 9 |
. . . . . . . . . . 11
|
| 67 | 64 | recnd 7147 |
. . . . . . . . . . 11
|
| 68 | 66, 67 | mulcld 7139 |
. . . . . . . . . 10
|
| 69 | 65, 68 | addcld 7138 |
. . . . . . . . 9
|
| 70 | oveq1 5539 |
. . . . . . . . . 10
| |
| 71 | oveq2 5540 |
. . . . . . . . . . 11
| |
| 72 | 71 | oveq2d 5548 |
. . . . . . . . . 10
|
| 73 | 70, 72, 10 | ovmpt2g 5655 |
. . . . . . . . 9
|
| 74 | 63, 64, 69, 73 | syl3anc 1169 |
. . . . . . . 8
|
| 75 | 74 | eqeq2d 2092 |
. . . . . . 7
|
| 76 | 75 | 2rexbiia 2382 |
. . . . . 6
|
| 77 | 62, 76 | sylibr 132 |
. . . . 5
|
| 78 | fveq2 5198 |
. . . . . . . 8
| |
| 79 | df-ov 5535 |
. . . . . . . 8
| |
| 80 | 78, 79 | syl6eqr 2131 |
. . . . . . 7
|
| 81 | 80 | eqeq2d 2092 |
. . . . . 6
|
| 82 | 81 | rexxp 4498 |
. . . . 5
|
| 83 | 77, 82 | sylibr 132 |
. . . 4
|
| 84 | 83 | rgen 2416 |
. . 3
|
| 85 | dffo3 5335 |
. . 3
| |
| 86 | 33, 84, 85 | mpbir2an 883 |
. 2
|
| 87 | df-f1o 4929 |
. 2
| |
| 88 | 61, 86, 87 | mpbir2an 883 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-ltxr 7158 df-sub 7281 df-neg 7282 df-reap 7675 |
| This theorem is referenced by: cnrecnv 9797 |
| Copyright terms: Public domain | W3C validator |