ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o Unicode version

Theorem cnref1o 8733
Description: There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 6987), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnref1o  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Distinct variable group:    x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cnref1o
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 107 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  RR )
21recnd 7147 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  CC )
3 ax-icn 7071 . . . . . . . . 9  |-  _i  e.  CC
43a1i 9 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  _i  e.  CC )
5 simpr 108 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
65recnd 7147 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
74, 6mulcld 7139 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  y
)  e.  CC )
82, 7addcld 7138 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
98rgen2a 2417 . . . . 5  |-  A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC
10 cnref1o.1 . . . . . 6  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
1110fnmpt2 5848 . . . . 5  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC  ->  F  Fn  ( RR 
X.  RR ) )
129, 11ax-mp 7 . . . 4  |-  F  Fn  ( RR  X.  RR )
13 1st2nd2 5821 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1413fveq2d 5202 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
15 df-ov 5535 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
1614, 15syl6eqr 2131 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
17 xp1st 5812 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
18 xp2nd 5813 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
1917recnd 7147 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  CC )
203a1i 9 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  _i  e.  CC )
2118recnd 7147 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  CC )
2220, 21mulcld 7139 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( _i  x.  ( 2nd `  z
) )  e.  CC )
2319, 22addcld 7138 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  e.  CC )
24 oveq1 5539 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  ( _i  x.  y ) )  =  ( ( 1st `  z
)  +  ( _i  x.  y ) ) )
25 oveq2 5540 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( _i  x.  y )  =  ( _i  x.  ( 2nd `  z ) ) )
2625oveq2d 5548 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z )  +  ( _i  x.  y
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2724, 26, 10ovmpt2g 5655 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR  /\  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  e.  CC )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2817, 18, 23, 27syl3anc 1169 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2916, 28eqtrd 2113 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
3029, 23eqeltrd 2155 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  e.  CC )
3130rgen 2416 . . . 4  |-  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC
32 ffnfv 5344 . . . 4  |-  ( F : ( RR  X.  RR ) --> CC  <->  ( F  Fn  ( RR  X.  RR )  /\  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC ) )
3312, 31, 32mpbir2an 883 . . 3  |-  F :
( RR  X.  RR )
--> CC
3417, 18jca 300 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  e.  RR  /\  ( 2nd `  z )  e.  RR ) )
35 xp1st 5812 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 1st `  w )  e.  RR )
36 xp2nd 5813 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 2nd `  w )  e.  RR )
3735, 36jca 300 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( ( 1st `  w )  e.  RR  /\  ( 2nd `  w )  e.  RR ) )
38 cru 7702 . . . . . . 7  |-  ( ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  /\  ( ( 1st `  w
)  e.  RR  /\  ( 2nd `  w )  e.  RR ) )  ->  ( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) )  <->  ( ( 1st `  z )  =  ( 1st `  w
)  /\  ( 2nd `  z )  =  ( 2nd `  w ) ) ) )
3934, 37, 38syl2an 283 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w )  +  ( _i  x.  ( 2nd `  w ) ) )  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
40 fveq2 5198 . . . . . . . . 9  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
41 fveq2 5198 . . . . . . . . . 10  |-  ( z  =  w  ->  ( 1st `  z )  =  ( 1st `  w
) )
42 fveq2 5198 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4342oveq2d 5548 . . . . . . . . . 10  |-  ( z  =  w  ->  (
_i  x.  ( 2nd `  z ) )  =  ( _i  x.  ( 2nd `  w ) ) )
4441, 43oveq12d 5550 . . . . . . . . 9  |-  ( z  =  w  ->  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4540, 44eqeq12d 2095 . . . . . . . 8  |-  ( z  =  w  ->  (
( F `  z
)  =  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  <->  ( F `  w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
4645, 29vtoclga 2664 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( F `
 w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4729, 46eqeqan12d 2096 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
48 1st2nd2 5821 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  w  = 
<. ( 1st `  w
) ,  ( 2nd `  w ) >. )
4913, 48eqeqan12d 2096 . . . . . . 7  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
50 vex 2604 . . . . . . . . 9  |-  z  e. 
_V
51 1stexg 5814 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
5250, 51ax-mp 7 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
53 2ndexg 5815 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
5450, 53ax-mp 7 . . . . . . . 8  |-  ( 2nd `  z )  e.  _V
5552, 54opth 3992 . . . . . . 7  |-  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. 
<->  ( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) )
5649, 55syl6bb 194 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
5739, 47, 563bitr4d 218 . . . . 5  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
z  =  w ) )
5857biimpd 142 . . . 4  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
5958rgen2a 2417 . . 3  |-  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w )
60 dff13 5428 . . 3  |-  ( F : ( RR  X.  RR ) -1-1-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
6133, 59, 60mpbir2an 883 . 2  |-  F :
( RR  X.  RR ) -1-1-> CC
62 cnre 7115 . . . . . 6  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
63 simpl 107 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  RR )
64 simpr 108 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  RR )
6563recnd 7147 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  CC )
663a1i 9 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  _i  e.  CC )
6764recnd 7147 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  CC )
6866, 67mulcld 7139 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( _i  x.  v
)  e.  CC )
6965, 68addcld 7138 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
70 oveq1 5539 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  y
) ) )
71 oveq2 5540 . . . . . . . . . . 11  |-  ( y  =  v  ->  (
_i  x.  y )  =  ( _i  x.  v ) )
7271oveq2d 5548 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  v
) ) )
7370, 72, 10ovmpt2g 5655 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR  /\  (
u  +  ( _i  x.  v ) )  e.  CC )  -> 
( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7463, 64, 69, 73syl3anc 1169 . . . . . . . 8  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7574eqeq2d 2092 . . . . . . 7  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( w  =  ( u F v )  <-> 
w  =  ( u  +  ( _i  x.  v ) ) ) )
76752rexbiia 2382 . . . . . 6  |-  ( E. u  e.  RR  E. v  e.  RR  w  =  ( u F v )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
7762, 76sylibr 132 . . . . 5  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
78 fveq2 5198 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( F `  <. u ,  v >. )
)
79 df-ov 5535 . . . . . . . 8  |-  ( u F v )  =  ( F `  <. u ,  v >. )
8078, 79syl6eqr 2131 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( u F v ) )
8180eqeq2d 2092 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( w  =  ( F `  z
)  <->  w  =  (
u F v ) ) )
8281rexxp 4498 . . . . 5  |-  ( E. z  e.  ( RR 
X.  RR ) w  =  ( F `  z )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
8377, 82sylibr 132 . . . 4  |-  ( w  e.  CC  ->  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
)
8483rgen 2416 . . 3  |-  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
85 dffo3 5335 . . 3  |-  ( F : ( RR  X.  RR ) -onto-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
) )
8633, 84, 85mpbir2an 883 . 2  |-  F :
( RR  X.  RR ) -onto-> CC
87 df-f1o 4929 . 2  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  <->  ( F :
( RR  X.  RR ) -1-1-> CC  /\  F :
( RR  X.  RR ) -onto-> CC ) )
8861, 86, 87mpbir2an 883 1  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   _Vcvv 2601   <.cop 3401    X. cxp 4361    Fn wfn 4917   -->wf 4918   -1-1->wf1 4919   -onto->wfo 4920   -1-1-onto->wf1o 4921   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786   CCcc 6979   RRcr 6980   _ici 6983    + caddc 6984    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675
This theorem is referenced by:  cnrecnv  9797
  Copyright terms: Public domain W3C validator