| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoverg | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopoverg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | 1 | relopabi 4481 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | ecopoprg.com |
. . . . 5
| |
| 5 | 1, 4 | ecopovsymg 6228 |
. . . 4
|
| 6 | 5 | adantl 271 |
. . 3
|
| 7 | ecopoprg.cl |
. . . . 5
| |
| 8 | ecopoprg.ass |
. . . . 5
| |
| 9 | ecopoprg.can |
. . . . 5
| |
| 10 | 1, 4, 7, 8, 9 | ecopovtrng 6229 |
. . . 4
|
| 11 | 10 | adantl 271 |
. . 3
|
| 12 | 4 | adantl 271 |
. . . . . . . . . . 11
|
| 13 | simpll 495 |
. . . . . . . . . . 11
| |
| 14 | simplr 496 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | caovcomd 5677 |
. . . . . . . . . 10
|
| 16 | 1 | ecopoveq 6224 |
. . . . . . . . . 10
|
| 17 | 15, 16 | mpbird 165 |
. . . . . . . . 9
|
| 18 | 17 | anidms 389 |
. . . . . . . 8
|
| 19 | 18 | rgen2a 2417 |
. . . . . . 7
|
| 20 | breq12 3790 |
. . . . . . . . 9
| |
| 21 | 20 | anidms 389 |
. . . . . . . 8
|
| 22 | 21 | ralxp 4497 |
. . . . . . 7
|
| 23 | 19, 22 | mpbir 144 |
. . . . . 6
|
| 24 | 23 | rspec 2415 |
. . . . 5
|
| 25 | 24 | a1i 9 |
. . . 4
|
| 26 | opabssxp 4432 |
. . . . . . 7
| |
| 27 | 1, 26 | eqsstri 3029 |
. . . . . 6
|
| 28 | 27 | ssbri 3827 |
. . . . 5
|
| 29 | brxp 4393 |
. . . . . 6
| |
| 30 | 29 | simplbi 268 |
. . . . 5
|
| 31 | 28, 30 | syl 14 |
. . . 4
|
| 32 | 25, 31 | impbid1 140 |
. . 3
|
| 33 | 3, 6, 11, 32 | iserd 6155 |
. 2
|
| 34 | 33 | trud 1293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fv 4930 df-ov 5535 df-er 6129 |
| This theorem is referenced by: enqer 6548 enrer 6912 |
| Copyright terms: Public domain | W3C validator |