| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota5f | Unicode version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota5f.1 |
|
| riota5f.2 |
|
| riota5f.3 |
|
| Ref | Expression |
|---|---|
| riota5f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota5f.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2434 |
. 2
|
| 3 | riota5f.2 |
. . . 4
| |
| 4 | a1tru 1300 |
. . . . . . 7
| |
| 5 | reu6i 2783 |
. . . . . . . . 9
| |
| 6 | 5 | adantl 271 |
. . . . . . . 8
|
| 7 | nfv 1461 |
. . . . . . . . . 10
| |
| 8 | nfv 1461 |
. . . . . . . . . . 11
| |
| 9 | nfra1 2397 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | nfan 1497 |
. . . . . . . . . 10
|
| 11 | 7, 10 | nfan 1497 |
. . . . . . . . 9
|
| 12 | nfcvd 2220 |
. . . . . . . . 9
| |
| 13 | nfvd 1462 |
. . . . . . . . 9
| |
| 14 | simprl 497 |
. . . . . . . . 9
| |
| 15 | simpr 108 |
. . . . . . . . . . 11
| |
| 16 | simplrr 502 |
. . . . . . . . . . . 12
| |
| 17 | simplrl 501 |
. . . . . . . . . . . . 13
| |
| 18 | 15, 17 | eqeltrd 2155 |
. . . . . . . . . . . 12
|
| 19 | rsp 2411 |
. . . . . . . . . . . 12
| |
| 20 | 16, 18, 19 | sylc 61 |
. . . . . . . . . . 11
|
| 21 | 15, 20 | mpbird 165 |
. . . . . . . . . 10
|
| 22 | a1tru 1300 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | 2thd 173 |
. . . . . . . . 9
|
| 24 | 11, 12, 13, 14, 23 | riota2df 5508 |
. . . . . . . 8
|
| 25 | 6, 24 | mpdan 412 |
. . . . . . 7
|
| 26 | 4, 25 | mpbid 145 |
. . . . . 6
|
| 27 | 26 | expr 367 |
. . . . 5
|
| 28 | 27 | ralrimiva 2434 |
. . . 4
|
| 29 | rspsbc 2896 |
. . . 4
| |
| 30 | 3, 28, 29 | sylc 61 |
. . 3
|
| 31 | nfcvd 2220 |
. . . . . . . 8
| |
| 32 | riota5f.1 |
. . . . . . . 8
| |
| 33 | 31, 32 | nfeqd 2233 |
. . . . . . 7
|
| 34 | 7, 33 | nfan1 1496 |
. . . . . 6
|
| 35 | simpr 108 |
. . . . . . . 8
| |
| 36 | 35 | eqeq2d 2092 |
. . . . . . 7
|
| 37 | 36 | bibi2d 230 |
. . . . . 6
|
| 38 | 34, 37 | ralbid 2366 |
. . . . 5
|
| 39 | 35 | eqeq2d 2092 |
. . . . 5
|
| 40 | 38, 39 | imbi12d 232 |
. . . 4
|
| 41 | 3, 40 | sbcied 2850 |
. . 3
|
| 42 | 30, 41 | mpbid 145 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 df-sbc 2816 df-un 2977 df-sn 3404 df-pr 3405 df-uni 3602 df-iota 4887 df-riota 5488 |
| This theorem is referenced by: riota5 5513 |
| Copyright terms: Public domain | W3C validator |