ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemzz Unicode version

Theorem bezoutlemzz 10391
Description: Lemma for Bézout's identity. Like bezoutlemex 10390 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemzz  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    B, d, x, y   
z, A, d    z, B

Proof of Theorem bezoutlemzz
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bezoutlemex 10390 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 nfv 1461 . . . . . . 7  |-  F/ z ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )
3 nfra1 2397 . . . . . . 7  |-  F/ z A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )
42, 3nfan 1497 . . . . . 6  |-  F/ z ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )
5 simpr 108 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  z  e.  NN0 )
6 rsp 2411 . . . . . . . . . . 11  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  e. 
NN0  ->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
76ad2antrr 471 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  e.  NN0  ->  ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) ) ) )
85, 7mpd 13 . . . . . . . . 9  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
98adantlll 463 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
10 breq1 3788 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
w  ||  d  <->  -u z  ||  d ) )
11 breq1 3788 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  A  <->  -u z  ||  A ) )
12 breq1 3788 . . . . . . . . . . . . 13  |-  ( w  =  -u z  ->  (
w  ||  B  <->  -u z  ||  B ) )
1311, 12anbi12d 456 . . . . . . . . . . . 12  |-  ( w  =  -u z  ->  (
( w  ||  A  /\  w  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
1410, 13imbi12d 232 . . . . . . . . . . 11  |-  ( w  =  -u z  ->  (
( w  ||  d  ->  ( w  ||  A  /\  w  ||  B ) )  <->  ( -u z  ||  d  ->  ( -u z  ||  A  /\  -u z  ||  B ) ) ) )
15 breq1 3788 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
16 breq1 3788 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
17 breq1 3788 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1816, 17anbi12d 456 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1915, 18imbi12d 232 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  <->  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) ) )
2019cbvralv 2577 . . . . . . . . . . . . 13  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2120biimpi 118 . . . . . . . . . . . 12  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  A  /\  w  ||  B ) ) )
2221ad2antrr 471 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A. w  e.  NN0  ( w  ||  d  ->  ( w  ||  A  /\  w  ||  B
) ) )
23 simpr 108 . . . . . . . . . . 11  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  -u z  e.  NN0 )
2414, 22, 23rspcdva 2707 . . . . . . . . . 10  |-  ( ( ( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
2524adantlll 463 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  ( -u z  ||  d  -> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
26 simplr 496 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  z  e.  ZZ )
27 simpllr 500 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  d  e.  NN0 )
2827adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  NN0 )
2928nn0zd 8467 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  d  e.  ZZ )
30 negdvdsb 10211 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  d  e.  ZZ )  ->  ( z  ||  d  <->  -u z  ||  d ) )
3126, 29, 30syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  <->  -u z  ||  d ) )
32 simplll 499 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A  e.  NN0 )
3332ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  NN0 )
3433nn0zd 8467 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  A  e.  ZZ )
35 negdvdsb 10211 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ )  ->  ( z  ||  A  <->  -u z  ||  A ) )
3626, 34, 35syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  A  <->  -u z  ||  A ) )
37 simpllr 500 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  B  e.  NN0 )
3837ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  NN0 )
3938nn0zd 8467 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  B  e.  ZZ )
40 negdvdsb 10211 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ )  ->  ( z  ||  B  <->  -u z  ||  B ) )
4126, 39, 40syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  B  <->  -u z  ||  B ) )
4236, 41anbi12d 456 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( -u z  ||  A  /\  -u z  ||  B
) ) )
4325, 31, 423imtr4d 201 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  /\  -u z  e.  NN0 )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
44 elznn0 8366 . . . . . . . . . 10  |-  ( z  e.  ZZ  <->  ( z  e.  RR  /\  ( z  e.  NN0  \/  -u z  e.  NN0 ) ) )
4544simprbi 269 . . . . . . . . 9  |-  ( z  e.  ZZ  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
4645adantl 271 . . . . . . . 8  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  e.  NN0  \/  -u z  e.  NN0 )
)
479, 43, 46mpjaodan 744 . . . . . . 7  |-  ( ( ( ( ( A  e.  NN0  /\  B  e. 
NN0 )  /\  d  e.  NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  /\  z  e.  ZZ )  ->  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) )
4847ex 113 . . . . . 6  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  ( z  e.  ZZ  ->  ( z  ||  d  ->  ( z 
||  A  /\  z  ||  B ) ) ) )
494, 48ralrimi 2432 . . . . 5  |-  ( ( ( ( A  e. 
NN0  /\  B  e.  NN0 )  /\  d  e. 
NN0 )  /\  A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )
5049ex 113 . . . 4  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  ->  A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
5150anim1d 329 . . 3  |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
5251reximdva 2463 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( E. d  e. 
NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
531, 52mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   RRcr 6980    + caddc 6984    x. cmul 6986   -ucneg 7280   NN0cn0 8288   ZZcz 8351    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196
This theorem is referenced by:  bezoutlemaz  10392
  Copyright terms: Public domain W3C validator