| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzsinds | Unicode version | ||
| Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| uzsinds.1 |
|
| uzsinds.2 |
|
| uzsinds.3 |
|
| Ref | Expression |
|---|---|
| uzsinds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzsinds.2 |
. 2
| |
| 2 | oveq2 5540 |
. . . 4
| |
| 3 | 2 | raleqdv 2555 |
. . 3
|
| 4 | oveq2 5540 |
. . . 4
| |
| 5 | 4 | raleqdv 2555 |
. . 3
|
| 6 | oveq2 5540 |
. . . 4
| |
| 7 | 6 | raleqdv 2555 |
. . 3
|
| 8 | oveq2 5540 |
. . . 4
| |
| 9 | 8 | raleqdv 2555 |
. . 3
|
| 10 | ral0 3342 |
. . . . . . 7
| |
| 11 | zre 8355 |
. . . . . . . . . 10
| |
| 12 | 11 | ltm1d 8010 |
. . . . . . . . 9
|
| 13 | peano2zm 8389 |
. . . . . . . . . 10
| |
| 14 | fzn 9061 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | mpdan 412 |
. . . . . . . . 9
|
| 16 | 12, 15 | mpbid 145 |
. . . . . . . 8
|
| 17 | 16 | raleqdv 2555 |
. . . . . . 7
|
| 18 | 10, 17 | mpbiri 166 |
. . . . . 6
|
| 19 | uzid 8633 |
. . . . . . 7
| |
| 20 | uzsinds.3 |
. . . . . . . 8
| |
| 21 | 20 | rgen 2416 |
. . . . . . 7
|
| 22 | nfv 1461 |
. . . . . . . . 9
| |
| 23 | nfsbc1v 2833 |
. . . . . . . . 9
| |
| 24 | 22, 23 | nfim 1504 |
. . . . . . . 8
|
| 25 | oveq1 5539 |
. . . . . . . . . . 11
| |
| 26 | 25 | oveq2d 5548 |
. . . . . . . . . 10
|
| 27 | 26 | raleqdv 2555 |
. . . . . . . . 9
|
| 28 | sbceq1a 2824 |
. . . . . . . . 9
| |
| 29 | 27, 28 | imbi12d 232 |
. . . . . . . 8
|
| 30 | 24, 29 | rspc 2695 |
. . . . . . 7
|
| 31 | 19, 21, 30 | mpisyl 1375 |
. . . . . 6
|
| 32 | 18, 31 | mpd 13 |
. . . . 5
|
| 33 | ralsns 3431 |
. . . . 5
| |
| 34 | 32, 33 | mpbird 165 |
. . . 4
|
| 35 | fzsn 9084 |
. . . . 5
| |
| 36 | 35 | raleqdv 2555 |
. . . 4
|
| 37 | 34, 36 | mpbird 165 |
. . 3
|
| 38 | simpr 108 |
. . . . . 6
| |
| 39 | uzsinds.1 |
. . . . . . . . . 10
| |
| 40 | 39 | cbvralv 2577 |
. . . . . . . . 9
|
| 41 | 38, 40 | sylib 120 |
. . . . . . . 8
|
| 42 | eluzelz 8628 |
. . . . . . . . . . . . . 14
| |
| 43 | 42 | adantr 270 |
. . . . . . . . . . . . 13
|
| 44 | 43 | zcnd 8470 |
. . . . . . . . . . . 12
|
| 45 | 1cnd 7135 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45 | pncand 7420 |
. . . . . . . . . . 11
|
| 47 | 46 | oveq2d 5548 |
. . . . . . . . . 10
|
| 48 | 47 | raleqdv 2555 |
. . . . . . . . 9
|
| 49 | peano2uz 8671 |
. . . . . . . . . . 11
| |
| 50 | 49 | adantr 270 |
. . . . . . . . . 10
|
| 51 | nfv 1461 |
. . . . . . . . . . . 12
| |
| 52 | nfsbc1v 2833 |
. . . . . . . . . . . 12
| |
| 53 | 51, 52 | nfim 1504 |
. . . . . . . . . . 11
|
| 54 | oveq1 5539 |
. . . . . . . . . . . . . 14
| |
| 55 | 54 | oveq2d 5548 |
. . . . . . . . . . . . 13
|
| 56 | 55 | raleqdv 2555 |
. . . . . . . . . . . 12
|
| 57 | sbceq1a 2824 |
. . . . . . . . . . . 12
| |
| 58 | 56, 57 | imbi12d 232 |
. . . . . . . . . . 11
|
| 59 | 53, 58 | rspc 2695 |
. . . . . . . . . 10
|
| 60 | 50, 21, 59 | mpisyl 1375 |
. . . . . . . . 9
|
| 61 | 48, 60 | sylbird 168 |
. . . . . . . 8
|
| 62 | 41, 61 | mpd 13 |
. . . . . . 7
|
| 63 | 42 | peano2zd 8472 |
. . . . . . . . 9
|
| 64 | 63 | adantr 270 |
. . . . . . . 8
|
| 65 | ralsns 3431 |
. . . . . . . 8
| |
| 66 | 64, 65 | syl 14 |
. . . . . . 7
|
| 67 | 62, 66 | mpbird 165 |
. . . . . 6
|
| 68 | ralun 3154 |
. . . . . 6
| |
| 69 | 38, 67, 68 | syl2anc 403 |
. . . . 5
|
| 70 | fzsuc 9086 |
. . . . . . 7
| |
| 71 | 70 | raleqdv 2555 |
. . . . . 6
|
| 72 | 71 | adantr 270 |
. . . . 5
|
| 73 | 69, 72 | mpbird 165 |
. . . 4
|
| 74 | 73 | ex 113 |
. . 3
|
| 75 | 3, 5, 7, 9, 37, 74 | uzind4 8676 |
. 2
|
| 76 | eluzfz2 9051 |
. 2
| |
| 77 | 1, 75, 76 | rspcdva 2707 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: nnsinds 9429 nn0sinds 9430 |
| Copyright terms: Public domain | W3C validator |