ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsinds Unicode version

Theorem uzsinds 9428
Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014.)
Hypotheses
Ref Expression
uzsinds.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
uzsinds.2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
uzsinds.3  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
Assertion
Ref Expression
uzsinds  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Distinct variable groups:    ch, x    x, M, y    x, N    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    N( y)

Proof of Theorem uzsinds
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzsinds.2 . 2  |-  ( x  =  N  ->  ( ph 
<->  ch ) )
2 oveq2 5540 . . . 4  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
32raleqdv 2555 . . 3  |-  ( w  =  M  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... M ) ph ) )
4 oveq2 5540 . . . 4  |-  ( w  =  k  ->  ( M ... w )  =  ( M ... k
) )
54raleqdv 2555 . . 3  |-  ( w  =  k  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... k ) ph ) )
6 oveq2 5540 . . . 4  |-  ( w  =  ( k  +  1 )  ->  ( M ... w )  =  ( M ... (
k  +  1 ) ) )
76raleqdv 2555 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
8 oveq2 5540 . . . 4  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
98raleqdv 2555 . . 3  |-  ( w  =  N  ->  ( A. x  e.  ( M ... w ) ph  <->  A. x  e.  ( M ... N ) ph ) )
10 ral0 3342 . . . . . . 7  |-  A. y  e.  (/)  ps
11 zre 8355 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1211ltm1d 8010 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
13 peano2zm 8389 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
14 fzn 9061 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1513, 14mpdan 412 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1612, 15mpbid 145 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
1716raleqdv 2555 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps  <->  A. y  e.  (/)  ps )
)
1810, 17mpbiri 166 . . . . . 6  |-  ( M  e.  ZZ  ->  A. y  e.  ( M ... ( M  -  1 ) ) ps )
19 uzid 8633 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
20 uzsinds.3 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph ) )
2120rgen 2416 . . . . . . 7  |-  A. x  e.  ( ZZ>= `  M )
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )
22 nfv 1461 . . . . . . . . 9  |-  F/ x A. y  e.  ( M ... ( M  - 
1 ) ) ps
23 nfsbc1v 2833 . . . . . . . . 9  |-  F/ x [. M  /  x ]. ph
2422, 23nfim 1504 . . . . . . . 8  |-  F/ x
( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph )
25 oveq1 5539 . . . . . . . . . . 11  |-  ( x  =  M  ->  (
x  -  1 )  =  ( M  - 
1 ) )
2625oveq2d 5548 . . . . . . . . . 10  |-  ( x  =  M  ->  ( M ... ( x  - 
1 ) )  =  ( M ... ( M  -  1 ) ) )
2726raleqdv 2555 . . . . . . . . 9  |-  ( x  =  M  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( M  - 
1 ) ) ps ) )
28 sbceq1a 2824 . . . . . . . . 9  |-  ( x  =  M  ->  ( ph 
<-> 
[. M  /  x ]. ph ) )
2927, 28imbi12d 232 . . . . . . . 8  |-  ( x  =  M  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3024, 29rspc 2695 . . . . . . 7  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( M  -  1 ) ) ps  ->  [. M  /  x ]. ph ) ) )
3119, 21, 30mpisyl 1375 . . . . . 6  |-  ( M  e.  ZZ  ->  ( A. y  e.  ( M ... ( M  - 
1 ) ) ps 
->  [. M  /  x ]. ph ) )
3218, 31mpd 13 . . . . 5  |-  ( M  e.  ZZ  ->  [. M  /  x ]. ph )
33 ralsns 3431 . . . . 5  |-  ( M  e.  ZZ  ->  ( A. x  e.  { M } ph  <->  [. M  /  x ]. ph ) )
3432, 33mpbird 165 . . . 4  |-  ( M  e.  ZZ  ->  A. x  e.  { M } ph )
35 fzsn 9084 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
3635raleqdv 2555 . . . 4  |-  ( M  e.  ZZ  ->  ( A. x  e.  ( M ... M ) ph  <->  A. x  e.  { M } ph ) )
3734, 36mpbird 165 . . 3  |-  ( M  e.  ZZ  ->  A. x  e.  ( M ... M
) ph )
38 simpr 108 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... k )
ph )
39 uzsinds.1 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
4039cbvralv 2577 . . . . . . . . 9  |-  ( A. x  e.  ( M ... k ) ph  <->  A. y  e.  ( M ... k
) ps )
4138, 40sylib 120 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. y  e.  ( M ... k ) ps )
42 eluzelz 8628 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4342adantr 270 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  ZZ )
4443zcnd 8470 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  k  e.  CC )
45 1cnd 7135 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  1  e.  CC )
4644, 45pncand 7420 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( ( k  +  1 )  -  1 )  =  k )
4746oveq2d 5548 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( M ... (
( k  +  1 )  -  1 ) )  =  ( M ... k ) )
4847raleqdv 2555 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  <->  A. y  e.  ( M ... k
) ps ) )
49 peano2uz 8671 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ( ZZ>= `  M )
)
5049adantr 270 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ( ZZ>= `  M ) )
51 nfv 1461 . . . . . . . . . . . 12  |-  F/ x A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps
52 nfsbc1v 2833 . . . . . . . . . . . 12  |-  F/ x [. ( k  +  1 )  /  x ]. ph
5351, 52nfim 1504 . . . . . . . . . . 11  |-  F/ x
( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
54 oveq1 5539 . . . . . . . . . . . . . 14  |-  ( x  =  ( k  +  1 )  ->  (
x  -  1 )  =  ( ( k  +  1 )  - 
1 ) )
5554oveq2d 5548 . . . . . . . . . . . . 13  |-  ( x  =  ( k  +  1 )  ->  ( M ... ( x  - 
1 ) )  =  ( M ... (
( k  +  1 )  -  1 ) ) )
5655raleqdv 2555 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( A. y  e.  ( M ... ( x  - 
1 ) ) ps  <->  A. y  e.  ( M ... ( ( k  +  1 )  - 
1 ) ) ps ) )
57 sbceq1a 2824 . . . . . . . . . . . 12  |-  ( x  =  ( k  +  1 )  ->  ( ph 
<-> 
[. ( k  +  1 )  /  x ]. ph ) )
5856, 57imbi12d 232 . . . . . . . . . . 11  |-  ( x  =  ( k  +  1 )  ->  (
( A. y  e.  ( M ... (
x  -  1 ) ) ps  ->  ph )  <->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
5953, 58rspc 2695 . . . . . . . . . 10  |-  ( ( k  +  1 )  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( ZZ>= `  M ) ( A. y  e.  ( M ... ( x  -  1 ) ) ps  ->  ph )  ->  ( A. y  e.  ( M ... ( ( k  +  1 )  -  1 ) ) ps  ->  [. ( k  +  1 )  /  x ]. ph ) ) )
6050, 21, 59mpisyl 1375 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... (
( k  +  1 )  -  1 ) ) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6148, 60sylbird 168 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. y  e.  ( M ... k
) ps  ->  [. (
k  +  1 )  /  x ]. ph )
)
6241, 61mpd 13 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  [. ( k  +  1 )  /  x ]. ph )
6342peano2zd 8472 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  +  1 )  e.  ZZ )
6463adantr 270 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( k  +  1 )  e.  ZZ )
65 ralsns 3431 . . . . . . . 8  |-  ( ( k  +  1 )  e.  ZZ  ->  ( A. x  e.  { ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6664, 65syl 14 . . . . . . 7  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e. 
{ ( k  +  1 ) } ph  <->  [. ( k  +  1 )  /  x ]. ph ) )
6762, 66mpbird 165 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  {
( k  +  1 ) } ph )
68 ralun 3154 . . . . . 6  |-  ( ( A. x  e.  ( M ... k )
ph  /\  A. x  e.  { ( k  +  1 ) } ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
6938, 67, 68syl2anc 403 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( ( M ... k
)  u.  { ( k  +  1 ) } ) ph )
70 fzsuc 9086 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... ( k  +  1 ) )  =  ( ( M ... k
)  u.  { ( k  +  1 ) } ) )
7170raleqdv 2555 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... ( k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7271adantr 270 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  ( A. x  e.  ( M ... (
k  +  1 ) ) ph  <->  A. x  e.  ( ( M ... k )  u.  {
( k  +  1 ) } ) ph ) )
7369, 72mpbird 165 . . . 4  |-  ( ( k  e.  ( ZZ>= `  M )  /\  A. x  e.  ( M ... k ) ph )  ->  A. x  e.  ( M ... ( k  +  1 ) )
ph )
7473ex 113 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( A. x  e.  ( M ... k ) ph  ->  A. x  e.  ( M ... ( k  +  1 ) ) ph ) )
753, 5, 7, 9, 37, 74uzind4 8676 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  A. x  e.  ( M ... N
) ph )
76 eluzfz2 9051 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
771, 75, 76rspcdva 2707 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   [.wsbc 2815    u. cun 2971   (/)c0 3251   {csn 3398   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1c1 6982    + caddc 6984    < clt 7153    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  nnsinds  9429  nn0sinds  9430
  Copyright terms: Public domain W3C validator