ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores Unicode version

Theorem smores 5930
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )

Proof of Theorem smores
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 4961 . . . . . . . 8  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfn 4951 . . . . . . . 8  |-  ( Fun 
A  <->  A  Fn  dom  A )
3 funfn 4951 . . . . . . . 8  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
41, 2, 33imtr3i 198 . . . . . . 7  |-  ( A  Fn  dom  A  -> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
5 resss 4653 . . . . . . . . 9  |-  ( A  |`  B )  C_  A
6 rnss 4582 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  ran  ( A  |`  B )  C_  ran  A )
75, 6ax-mp 7 . . . . . . . 8  |-  ran  ( A  |`  B )  C_  ran  A
8 sstr 3007 . . . . . . . 8  |-  ( ( ran  ( A  |`  B )  C_  ran  A  /\  ran  A  C_  On )  ->  ran  ( A  |`  B )  C_  On )
97, 8mpan 414 . . . . . . 7  |-  ( ran 
A  C_  On  ->  ran  ( A  |`  B ) 
C_  On )
104, 9anim12i 331 . . . . . 6  |-  ( ( A  Fn  dom  A  /\  ran  A  C_  On )  ->  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  /\  ran  ( A  |`  B )  C_  On ) )
11 df-f 4926 . . . . . 6  |-  ( A : dom  A --> On  <->  ( A  Fn  dom  A  /\  ran  A 
C_  On ) )
12 df-f 4926 . . . . . 6  |-  ( ( A  |`  B ) : dom  ( A  |`  B ) --> On  <->  ( ( A  |`  B )  Fn 
dom  ( A  |`  B )  /\  ran  ( A  |`  B ) 
C_  On ) )
1310, 11, 123imtr4i 199 . . . . 5  |-  ( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On )
1413a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A : dom  A --> On  ->  ( A  |`  B ) : dom  ( A  |`  B ) --> On ) )
15 ordelord 4136 . . . . . . 7  |-  ( ( Ord  dom  A  /\  B  e.  dom  A )  ->  Ord  B )
1615expcom 114 . . . . . 6  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  B ) )
17 ordin 4140 . . . . . . 7  |-  ( ( Ord  B  /\  Ord  dom 
A )  ->  Ord  ( B  i^i  dom  A
) )
1817ex 113 . . . . . 6  |-  ( Ord 
B  ->  ( Ord  dom 
A  ->  Ord  ( B  i^i  dom  A )
) )
1916, 18syli 37 . . . . 5  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  ( B  i^i  dom  A ) ) )
20 dmres 4650 . . . . . 6  |-  dom  ( A  |`  B )  =  ( B  i^i  dom  A )
21 ordeq 4127 . . . . . 6  |-  ( dom  ( A  |`  B )  =  ( B  i^i  dom 
A )  ->  ( Ord  dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
) )
2220, 21ax-mp 7 . . . . 5  |-  ( Ord 
dom  ( A  |`  B )  <->  Ord  ( B  i^i  dom  A )
)
2319, 22syl6ibr 160 . . . 4  |-  ( B  e.  dom  A  -> 
( Ord  dom  A  ->  Ord  dom  ( A  |`  B ) ) )
24 dmss 4552 . . . . . . . . 9  |-  ( ( A  |`  B )  C_  A  ->  dom  ( A  |`  B )  C_  dom  A )
255, 24ax-mp 7 . . . . . . . 8  |-  dom  ( A  |`  B )  C_  dom  A
26 ssralv 3058 . . . . . . . 8  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2725, 26ax-mp 7 . . . . . . 7  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
28 ssralv 3058 . . . . . . . . 9  |-  ( dom  ( A  |`  B ) 
C_  dom  A  ->  ( A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
2925, 28ax-mp 7 . . . . . . . 8  |-  ( A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
3029ralimi 2426 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
3127, 30syl 14 . . . . . 6  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
32 inss1 3186 . . . . . . . . . . . . 13  |-  ( B  i^i  dom  A )  C_  B
3320, 32eqsstri 3029 . . . . . . . . . . . 12  |-  dom  ( A  |`  B )  C_  B
34 simpl 107 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  dom  ( A  |`  B ) )
3533, 34sseldi 2997 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  ->  x  e.  B )
36 fvres 5219 . . . . . . . . . . 11  |-  ( x  e.  B  ->  (
( A  |`  B ) `
 x )  =  ( A `  x
) )
3735, 36syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  =  ( A `
 x ) )
38 simpr 108 . . . . . . . . . . . 12  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  dom  ( A  |`  B ) )
3933, 38sseldi 2997 . . . . . . . . . . 11  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
y  e.  B )
40 fvres 5219 . . . . . . . . . . 11  |-  ( y  e.  B  ->  (
( A  |`  B ) `
 y )  =  ( A `  y
) )
4139, 40syl 14 . . . . . . . . . 10  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  y
)  =  ( A `
 y ) )
4237, 41eleq12d 2149 . . . . . . . . 9  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y )  <->  ( A `  x )  e.  ( A `  y ) ) )
4342imbi2d 228 . . . . . . . 8  |-  ( ( x  e.  dom  ( A  |`  B )  /\  y  e.  dom  ( A  |`  B ) )  -> 
( ( x  e.  y  ->  ( ( A  |`  B ) `  x )  e.  ( ( A  |`  B ) `
 y ) )  <-> 
( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) ) )
4443ralbidva 2364 . . . . . . 7  |-  ( x  e.  dom  ( A  |`  B )  ->  ( A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) )  <->  A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
4544ralbiia 2380 . . . . . 6  |-  ( A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) )  <->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )
4631, 45sylibr 132 . . . . 5  |-  ( A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  ( ( A  |`  B ) `  x
)  e.  ( ( A  |`  B ) `  y ) ) )
4746a1i 9 . . . 4  |-  ( B  e.  dom  A  -> 
( A. x  e. 
dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )  ->  A. x  e.  dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
4814, 23, 473anim123d 1250 . . 3  |-  ( B  e.  dom  A  -> 
( ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) )  -> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) ) )
49 df-smo 5924 . . 3  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
50 df-smo 5924 . . 3  |-  ( Smo  ( A  |`  B )  <-> 
( ( A  |`  B ) : dom  ( A  |`  B ) --> On  /\  Ord  dom  ( A  |`  B )  /\  A. x  e. 
dom  ( A  |`  B ) A. y  e.  dom  ( A  |`  B ) ( x  e.  y  ->  (
( A  |`  B ) `
 x )  e.  ( ( A  |`  B ) `  y
) ) ) )
5148, 49, 503imtr4g 203 . 2  |-  ( B  e.  dom  A  -> 
( Smo  A  ->  Smo  ( A  |`  B ) ) )
5251impcom 123 1  |-  ( ( Smo  A  /\  B  e.  dom  A )  ->  Smo  ( A  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348    i^i cin 2972    C_ wss 2973   Ord word 4117   Oncon0 4118   dom cdm 4363   ran crn 4364    |` cres 4365   Fun wfun 4916    Fn wfn 4917   -->wf 4918   ` cfv 4922   Smo wsmo 5923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-tr 3876  df-iord 4121  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-smo 5924
This theorem is referenced by:  smores3  5931
  Copyright terms: Public domain W3C validator