| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores | Unicode version | ||
| Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| smores |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 4961 |
. . . . . . . 8
| |
| 2 | funfn 4951 |
. . . . . . . 8
| |
| 3 | funfn 4951 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | 3imtr3i 198 |
. . . . . . 7
|
| 5 | resss 4653 |
. . . . . . . . 9
| |
| 6 | rnss 4582 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ax-mp 7 |
. . . . . . . 8
|
| 8 | sstr 3007 |
. . . . . . . 8
| |
| 9 | 7, 8 | mpan 414 |
. . . . . . 7
|
| 10 | 4, 9 | anim12i 331 |
. . . . . 6
|
| 11 | df-f 4926 |
. . . . . 6
| |
| 12 | df-f 4926 |
. . . . . 6
| |
| 13 | 10, 11, 12 | 3imtr4i 199 |
. . . . 5
|
| 14 | 13 | a1i 9 |
. . . 4
|
| 15 | ordelord 4136 |
. . . . . . 7
| |
| 16 | 15 | expcom 114 |
. . . . . 6
|
| 17 | ordin 4140 |
. . . . . . 7
| |
| 18 | 17 | ex 113 |
. . . . . 6
|
| 19 | 16, 18 | syli 37 |
. . . . 5
|
| 20 | dmres 4650 |
. . . . . 6
| |
| 21 | ordeq 4127 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 7 |
. . . . 5
|
| 23 | 19, 22 | syl6ibr 160 |
. . . 4
|
| 24 | dmss 4552 |
. . . . . . . . 9
| |
| 25 | 5, 24 | ax-mp 7 |
. . . . . . . 8
|
| 26 | ssralv 3058 |
. . . . . . . 8
| |
| 27 | 25, 26 | ax-mp 7 |
. . . . . . 7
|
| 28 | ssralv 3058 |
. . . . . . . . 9
| |
| 29 | 25, 28 | ax-mp 7 |
. . . . . . . 8
|
| 30 | 29 | ralimi 2426 |
. . . . . . 7
|
| 31 | 27, 30 | syl 14 |
. . . . . 6
|
| 32 | inss1 3186 |
. . . . . . . . . . . . 13
| |
| 33 | 20, 32 | eqsstri 3029 |
. . . . . . . . . . . 12
|
| 34 | simpl 107 |
. . . . . . . . . . . 12
| |
| 35 | 33, 34 | sseldi 2997 |
. . . . . . . . . . 11
|
| 36 | fvres 5219 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . . . 10
|
| 38 | simpr 108 |
. . . . . . . . . . . 12
| |
| 39 | 33, 38 | sseldi 2997 |
. . . . . . . . . . 11
|
| 40 | fvres 5219 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | syl 14 |
. . . . . . . . . 10
|
| 42 | 37, 41 | eleq12d 2149 |
. . . . . . . . 9
|
| 43 | 42 | imbi2d 228 |
. . . . . . . 8
|
| 44 | 43 | ralbidva 2364 |
. . . . . . 7
|
| 45 | 44 | ralbiia 2380 |
. . . . . 6
|
| 46 | 31, 45 | sylibr 132 |
. . . . 5
|
| 47 | 46 | a1i 9 |
. . . 4
|
| 48 | 14, 23, 47 | 3anim123d 1250 |
. . 3
|
| 49 | df-smo 5924 |
. . 3
| |
| 50 | df-smo 5924 |
. . 3
| |
| 51 | 48, 49, 50 | 3imtr4g 203 |
. 2
|
| 52 | 51 | impcom 123 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-tr 3876 df-iord 4121 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-smo 5924 |
| This theorem is referenced by: smores3 5931 |
| Copyright terms: Public domain | W3C validator |