ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 Unicode version

Theorem sotri2 4742
Description: A transitivity relation. (Read  -. B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 939 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  -.  B R A )
2 soi.2 . . . . . . 7  |-  R  C_  ( S  X.  S
)
32brel 4410 . . . . . 6  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
433ad2ant3 961 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S
) )
5 simp1 938 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A  e.  S )
6 df-3an 921 . . . . 5  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  <->  ( ( B  e.  S  /\  C  e.  S
)  /\  A  e.  S ) )
74, 5, 6sylanbrc 408 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )
8 simp3 940 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  B R C )
9 soi.1 . . . . 5  |-  R  Or  S
10 sowlin 4075 . . . . 5  |-  ( ( R  Or  S  /\  ( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
119, 10mpan 414 . . . 4  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
127, 8, 11sylc 61 . . 3  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B R A  \/  A R C ) )
1312ord 675 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( -.  B R A  ->  A R C ) )
141, 13mpd 13 1  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 661    /\ w3a 919    e. wcel 1433    C_ wss 2973   class class class wbr 3785    Or wor 4050    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-iso 4052  df-xp 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator