ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 Unicode version

Theorem ssun2 3136
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2  |-  A  C_  ( B  u.  A
)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3135 . 2  |-  A  C_  ( A  u.  B
)
2 uncom 3116 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
31, 2sseqtri 3031 1  |-  A  C_  ( B  u.  A
)
Colors of variables: wff set class
Syntax hints:    u. cun 2971    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by:  ssun4  3138  elun2  3140  unv  3281  un00  3290  snsspr2  3534  snsstp3  3537  unexb  4195  rnexg  4615  brtpos0  5890  ac6sfi  6379  ltrelxr  7173  un0mulcl  8322  pnfxr  8846  bdunexb  10711
  Copyright terms: Public domain W3C validator