| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssxpbm | Unicode version | ||
| Description: A cross-product subclass relationship is equivalent to the relationship for its components. (Contributed by Jim Kingdon, 12-Dec-2018.) |
| Ref | Expression |
|---|---|
| ssxpbm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpm 4765 |
. . . . . . . 8
| |
| 2 | dmxpm 4573 |
. . . . . . . . 9
| |
| 3 | 2 | adantl 271 |
. . . . . . . 8
|
| 4 | 1, 3 | sylbir 133 |
. . . . . . 7
|
| 5 | 4 | adantr 270 |
. . . . . 6
|
| 6 | dmss 4552 |
. . . . . . 7
| |
| 7 | 6 | adantl 271 |
. . . . . 6
|
| 8 | 5, 7 | eqsstr3d 3034 |
. . . . 5
|
| 9 | dmxpss 4773 |
. . . . 5
| |
| 10 | 8, 9 | syl6ss 3011 |
. . . 4
|
| 11 | rnxpm 4772 |
. . . . . . . . 9
| |
| 12 | 11 | adantr 270 |
. . . . . . . 8
|
| 13 | 1, 12 | sylbir 133 |
. . . . . . 7
|
| 14 | 13 | adantr 270 |
. . . . . 6
|
| 15 | rnss 4582 |
. . . . . . 7
| |
| 16 | 15 | adantl 271 |
. . . . . 6
|
| 17 | 14, 16 | eqsstr3d 3034 |
. . . . 5
|
| 18 | rnxpss 4774 |
. . . . 5
| |
| 19 | 17, 18 | syl6ss 3011 |
. . . 4
|
| 20 | 10, 19 | jca 300 |
. . 3
|
| 21 | 20 | ex 113 |
. 2
|
| 22 | xpss12 4463 |
. 2
| |
| 23 | 21, 22 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: xp11m 4779 |
| Copyright terms: Public domain | W3C validator |