ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnxpid Unicode version

Theorem rnxpid 4775
Description: The range of a square cross product. (Contributed by FL, 17-May-2010.)
Assertion
Ref Expression
rnxpid  |-  ran  ( A  X.  A )  =  A

Proof of Theorem rnxpid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnxpss 4774 . 2  |-  ran  ( A  X.  A )  C_  A
2 opelxp 4392 . . . . . 6  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  ( x  e.  A  /\  x  e.  A ) )
3 anidm 388 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  <->  x  e.  A )
42, 3bitri 182 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  <->  x  e.  A
)
5 opeq1 3570 . . . . . . . . 9  |-  ( x  =  y  ->  <. x ,  x >.  =  <. y ,  x >. )
65eleq1d 2147 . . . . . . . 8  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
76equcoms 1634 . . . . . . 7  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  <->  <. y ,  x >.  e.  ( A  X.  A ) ) )
87biimpd 142 . . . . . 6  |-  ( y  =  x  ->  ( <. x ,  x >.  e.  ( A  X.  A
)  ->  <. y ,  x >.  e.  ( A  X.  A ) ) )
98spimev 1782 . . . . 5  |-  ( <.
x ,  x >.  e.  ( A  X.  A
)  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
104, 9sylbir 133 . . . 4  |-  ( x  e.  A  ->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
11 vex 2604 . . . . 5  |-  x  e. 
_V
1211elrn2 4594 . . . 4  |-  ( x  e.  ran  ( A  X.  A )  <->  E. y <. y ,  x >.  e.  ( A  X.  A
) )
1310, 12sylibr 132 . . 3  |-  ( x  e.  A  ->  x  e.  ran  ( A  X.  A ) )
1413ssriv 3003 . 2  |-  A  C_  ran  ( A  X.  A
)
151, 14eqssi 3015 1  |-  ran  ( A  X.  A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401    X. cxp 4361   ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator