ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm Unicode version

Theorem xpm 4765
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Distinct variable groups:    x, A    y, B    z, A    z, B
Allowed substitution hints:    A( y)    B( x)

Proof of Theorem xpm
Dummy variables  a  b  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 4764 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. w  w  e.  ( A  X.  B
) )
2 eleq1 2141 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
32cbvexv 1836 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
4 eleq1 2141 . . . 4  |-  ( b  =  y  ->  (
b  e.  B  <->  y  e.  B ) )
54cbvexv 1836 . . 3  |-  ( E. b  b  e.  B  <->  E. y  y  e.  B
)
63, 5anbi12i 447 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <-> 
( E. x  x  e.  A  /\  E. y  y  e.  B
) )
7 eleq1 2141 . . 3  |-  ( w  =  z  ->  (
w  e.  ( A  X.  B )  <->  z  e.  ( A  X.  B
) ) )
87cbvexv 1836 . 2  |-  ( E. w  w  e.  ( A  X.  B )  <->  E. z  z  e.  ( A  X.  B
) )
91, 6, 83bitr3i 208 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1421    e. wcel 1433    X. cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840  df-xp 4369
This theorem is referenced by:  ssxpbm  4776  xp11m  4779  xpexr2m  4782  unixpm  4873
  Copyright terms: Public domain W3C validator